
Arla
A Free AFS implementation from KTH

Edition 0.1, for version 0.34
1999 - 2000

Love Hörnquist-Åstrand
Assar Westerlund
Harald Barth
last updated $Date: 2000/10/01 19:18:41 $

Copyright (c) 1998 - 1999 Kungliga Tekniska Högskolan (Royal Institute of Technology, Stock-
holm, Sweden). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with
the distribution.
3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Kungliga Tekniska Högskolan
and its contributors.
4. Neither the name of the Institute nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 1988, 1990, 1993 The Regents of the University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with
the distribution.
3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by the University of California,
Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 1992 Simmule Turner and Rich Salz. All rights reserved.
This software is not subject to any license of the American Telephone and Telegraph Company
or of the Regents of the University of California.
Permission is granted to anyone to use this software for any purpose on any computer system,
and to alter it and redistribute it freely, subject to the following restrictions:
1. The authors are not responsible for the consequences of use of this software, no matter how
awful, even if they arise from flaws in it.
2. The origin of this software must not be misrepresented, either by explicit claim or by omission.
Since few users ever read sources, credits must appear in the documentation.
3. Altered versions must be plainly marked as such, and must not be misrepresented as being the
original software. Since few users ever read sources, credits must appear in the documentation.
4. This notice may not be removed or altered.

/* ** *
Copyright IBM Corporation 1988, 1989 - All Rights Reserved * * * * Permission to use,
copy, modify, and distribute this software and its * * documentation for any purpose and
without fee is hereby granted, * * provided that the above copyright notice appear in all copies
and * * that both that copyright notice and this permission notice appear in * * support-
ing documentation, and that the name of IBM not be used in * * advertising or publicity
pertaining to distribution of the software * * without specific, written prior permission. *
* * * IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL * * IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS, IN NO EVENT SHALL IBM * * BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY * * DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA OR PROFITS, WHETHER * * IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * * OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *
** */

i

Table of Contents

1 Introduction. 1
1.1 What is Arla? . 1
1.2 Status . 1
1.3 Bug reports . 1
1.4 Mailing list . 2

2 Description of AFS infrastructure. 3
2.1 Server overview . 3
2.2 Basic overseer - boserver . 3
2.3 Ubik . 4
2.4 Volume Location database server - vlserver . 4
2.5 Protection server - ptserver . 4
2.6 Kerberos server - kaserver . 4
2.7 Backup server - buserver . 5
2.8 Update server - upserver . 5
2.9 Fileserver and Volume Server - fs and volser 5
2.10 Salvage . 5
2.11 Things that milko does differently. 5

3 Organization of data . 6
3.1 Requirements . 6
3.2 Anti-requirements . 6
3.3 Volume . 6
3.4 Partition . 7
3.5 Volume cloning and read-only clones . 7
3.6 Mountpoints . 7
3.7 Callbacks . 7
3.8 Volume management . 7
3.9 Relationship between pts uid and unix uid. 8

4 Parts of Arla . 9
4.1 The life of a file . 9
4.2 Rx protocol . 11
4.3 LWP . 11
4.4 The files in arlad/ . 11

4.4.1 The core of arlad . 11
4.4.2 Operating system specific files . 12

5 Debugging . 14
5.1 Arlad . 14
5.2 Debugging LWP with GDB . 14
5.3 xfs . 15
5.4 xfs on linux . 15
5.5 Kernel debugging on BSD . 16
5.6 Darwin/MacOS X . 16

ii

6 Porting . 17
6.1 user-space . 17

6.1.1 LWP. 17
6.2 XFS . 17

7 Oddities . 19
7.1 AFS . 19
7.2 Operating systems . 19

8 Arla timeline . 20

9 Authors . 22

Appendix A Acknowledgments 23

Chapter 1: Introduction 1

1 Introduction

Caution: Parts of this package are not yet stable software. If something doesn’t
work, it’s probably because it doesn’t. If you don’t have backup of your data, take
backup.

1.1 What is Arla?

Arla is a free AFS implementation. Some of the goals are:

• to have an implementation that is free and can be used for adding and playing with cool
stuff, like support for disconnected-mode. Implement features you can’t get from commercial
AFS.

• to provide an alternative to Transarc’s AFS-client and server implementations.
• to add support for platfroms that don’t have AFS support from Transarc today.

This release is known to work on the following platforms: NetBSD, OpenBSD, FreeBSD, Linux,
Solaris, Darwin/MacOS X.

Earlier releases are known to work on current or earlier versions of the following platforms:
SunOS, AIX, IRIX, Digital UNIX. Some fixes might be necessary to make Arla work.

There is or has been done work to support the following platforms: HPUX, Fujitsu UXP/V, .
Some development is necessary to make Arla work.

There is work going on to support the following platform: Windows NT/2000. Contributions
are very welcome.

1.2 Status

Arla has the following features (quality varies between stable and not implemented):

• a rxgen implementation called ydr (stable).
• a cache manager replacing Transarc’s afsd. The cache managers quality depends on plat-

form: *BSD, Linux i386 and Solaris are stable, others platforms are not as tested ane
therefore not as stable.

• partly implemented fs, vos, pts commands. Commands typically issued by users are stable,
commands issued by administrators may return unmotivated errors or are not implemented
yet.

• an implementaion of rxkad written outside USA without any export restrictions (stable).
• a server implementation called milko, containing file server, volume server and protection

server. The file server has an API to the storage backend(s). Milko is still unstable and not
fit for production yet.

1.3 Bug reports

If you find bugs in this software, make sure it is a genuine bug and not just a part of the code
that isn’t implemented.

Bug reports should be sent to arla-drinkers@stacken.kth.se. Please include information on
what machine and operating system (including version) you are running, what you are trying
to do, what happens, what you think should have happened, an example for us to repeat, the

Chapter 1: Introduction 2

output you get when trying the example, and a patch for the problem if you have one. Please
make any patches with diff -u or diff -c.

Suggestions, comments and other non bug reports are also welcome.

1.4 Mailing list

There are two mailing lists with talk about Arla. arla-announce@stacken.kth.se is a
low-volume announcement list, while arla-drinkers@stacken.kth.se is for general dis-
cussion. There is also commit list arla-commit@stacken.kth.se. Send a message to
LIST-request@stacken.kth.se to subscribe.

Chapter 2: Description of AFS infrastructure 3

2 Description of AFS infrastructure

This is an overview of the AFS infrastructure as viewed from a Transarc perspective, since most
people still run Transarc cells.

2.1 Server overview

AFS filespace is split up in smaller parts called cells. These cells are usually listed under
‘/afs’. A cell is usually a whole organization or an adminstative unit within an organization.
An example is e.kth.se (with the path ‘/afs/e.kth.se’), that is the department of electrical
engineering at KTH, which obviously has the ‘e.kth.se’ domain in DNS. Using DNS domains
for cell names is the typical and most convenient way.

All cells (and their db-servers) in the AFS world are listed in a file named ‘CellServDB’. There is
a central copy that is maintained by Transarc at ‘/afs/transarc.com/service/etc/CellServDB’.
In addition Arla can use DNS to find the db-servers of a cell. The DNS resource record that is
used is the AFSDB. It tells you what machines are db servers for a particular cell. The AFSDB
resource record is also used for DCE/DFS. An example (the 1 means AFS, 2 is used for DCE):

e.kth.se. IN AFSDB 1 sonen.e.kth.se.
e.kth.se. IN AFSDB 1 anden.e.kth.se.
e.kth.se. IN AFSDB 1 fadern.e.kth.se.

Some cells use the abbreviated version ‘/afs/<word-before-first-dot>’ (in the example above
that would be ‘/afs/e/’. This might be convenient when typing them, but is a bad idea,
because it does not create the same name space everywhere. If you create a symbolic link to
‘/afs/e/foo/bar’, it will not work for people in other cells.

Note that cell names are written in lowercase by convention.

There are several servers running in an AFS cell. For performance and redundancy reasons,
these servers are often run on different hosts. There is a built in hierarchy within the servers
(in two different dimensions).

There is one server that keeps track of the other servers within a host, restart them when they
die, make sure they run in the correct order, save their core-files when they crash, and provide
an interface for the sysadmin to start/stop/restart the servers. This server is called bos-server
(Basic Overseer Server).

Another hierarchy is the one who keeps track of data (volumes, users, passwords, etc) and who
is performing the real hard work (serving files) There is the the database server that keeps the
database (obviously), and keeps several database copies on different hosts relpicated with Ubik
(see below). The fileserver and the client software (like the afsd/arlad, pts and, vos) are pulling
meta-data out of the dbserver to find where to find user-privileges and where volumes resides.

2.2 Basic overseer - boserver

The Bos server is making sure the servers are running. If they crash, it saves the corefile, and
starts a new server. It also makes sure that servers/services that are not supposted to run at
the same time do not. An example of this is the fileserver/volserver and salvage. It would be
devastating if salvage tried to correct data that the fileserver is changing. The salvager is run
before the fileserver starts. The administrator can also force a file server to run through salvage
again.

Chapter 2: Description of AFS infrastructure 4

2.3 Ubik

Ubik is a distributed database. It is really a (distributed) flat file that you can perform
read/write/lseek operation on. The important property of Ubik is that it provides a way to
make sure that updates are done once (transactions), and that the database is kept consis-
tent. It also provides read-only access to the database when there is one (or more) available
database-server(s).

This works the following way: A newly booted server sends out a message to all other servers
that tells them that it believes that it is the new master server. If the server gets a notice back
from an other server that tells it that the other server believes that it (or a third server) is the
master, depending on how long it has been masterserver it will switch to the new server. If they
can’t agree, the one with the lowest ip-address is supposed to win the argument. If the server is
a slave it still updates the database to the current version of the database.

A update to the database can only be done if more than half of the servers are available and
vote for the master. A update is first propaged to all servers, then after that is done, and if all
servers agree with the change, a commit message is sent out from the server, and the update is
written to disk and the serial number of the database is increased.

All servers in AFS use Ubik to store their data.

2.4 Volume Location database server - vlserver

The vldb-server is resposible for the information on what fileserver every volume resides and of
what kind of volumes exists on each fileserver.

To confuse you even more there are three types of support for the clients. Basically there is AFS
3.3, 3.4, and 3.6 support. The different interfaces look the same for the system administrator,
but there are some important differences.

AFS 3.3 is the classic interface. 3.4 adds the possibility of multihomed servers for the client
to talk to, and that introduces the N interface. To deal with multihomed clients AFS 3.5 was
introduced. This we call the U interface.

The N interface added more replication-sites in the database-entry structure. The U interface
changed the server and clients in two ways.

Now a server registers all its ip-addresses when it boots. This means that a server can add (or
remove) an network interface without rebooting. When registering at the vldb server, the file
server presents itself with an UUID, an unique identifier. This UUID will be stored in a file so
the UUID keeps constant even when network addresses are changed, added, or removed.

2.5 Protection server - ptserver

The protection server keeps track of all users and groups. It’s used a lot by the file servers.

2.6 Kerberos server - kaserver

The kaserver is a Kerberos server, but in other clothes. There is a new RPC interface to get
tickets (tokens) and administer the server. The old Kerberos v4 interface is also implemented,
and can be used by ordinary Kerberos v4 clients.

You can replace this server with an Heimdal kdc, since it provides a superset of the functionality.

Chapter 2: Description of AFS infrastructure 5

2.7 Backup server - buserver

The backup server keeps the backup database that is used when backing up and restoring
volumes. The backup server is not used by other servers, only operators.

2.8 Update server - upserver

With the update server its possible to automagicly update configuration files, server binaries.
You keep masters that are supposed to contain the correct copy of all the files and then other
servers can fetch them from there.

2.9 Fileserver and Volume Server - fs and volser

The file server serves data to the clients, keeps track of callbacks, and breaks callbacks when
needed. Volser is the administative interface where you add, move, change, and delete volumes
from the server.

The volume server and file server are ran at the same time and they sync with each other to
make sure that fileserver does not access a volume that volser is about to change.

2.10 Salvage

Salvage is not a real server. It is run before the fileserver and volser are started to make sure
the partitions are consistent.

It’s imperative that salvager is NOT run at the same time as the fileserver/volser is running.

2.11 Things that milko does differently.

Fileserver, volumeserver, and salvage are all in one program.

There is no bu nor ka-server. The ka-server is replaced by kth-krb or Heimdal. Heimdal’s kdc
even implements a ka-server readonly interface, so your users can keep using programs like klog.

Chapter 3: Organization of data 6

3 Organization of data

This chapter how data is stored and how AFS diffrent from, for example, NFS. It also describes
how data kept consistent and what the requirements was and how that inpacted on the design.

3.1 Requirements

• Scalability
It should be possible to use AFS with hundred-thousands of users without problems.
Writes that are done to diffrent parts of the filesystem should not affect each other. It
should be possible to distribute out the reads and writes over many file-servers. So if you
have a file that is accessed by many clients, it should be possible to distribute out the load.
If there is multiple writes to the same file, are you sure that isn’t a database.

• Transparent to users
Users should not need to know where their files are stored. It should be possible to move
their files while they are using their files.

• Easy to admin
It should be easy for a administrator to make changes to the filesystem. For example to
change quota for a user or project. It should also be possible to move the users data for a
fileserver to a less loaded one, or one with more diskspace available.
Some benefits of using AFS is:
• user-transparent data migration
• an ability for on-line backups;
• data replication that provides both load balancing and robustness of critical data
• global name space without automounters and other add-ons;
• @sys variables for platform-independent paths to binary location;
• enhanced security;
• client-side caching;

3.2 Anti-requirements

• No databases
AFS isn’t constructed for storing databases. It would be possible to use AFS for storing a
database if a layer above provided locking and synchronizing of data.
One of the problems is that AFS doesn’t include mandatory byte-range locks. AFS uses
advisory locking on whole files.
If you need a real database, use one, they are much more efficent on solving a database
problem. Don’t use AFS.

3.3 Volume

A volume is a unit that is smaller then a partition. Its usually (should be) a well defined area,
like a user’s home directory, a project work area, or a program distribution.

Quota is controlled on volume-level. All day-to-day management are done on volumes.

Chapter 3: Organization of data 7

3.4 Partition

In AFS a partition is what normally is named a partition. All partions that afs isusing is named
a special way, ‘/vicepNN’, where NN is ranged from a to z, continuing with aa to zz. The
fileserver (and volser) automaticly picks upp all partition starting with ‘/vicep’

Volumes are stored in a partition. Volumes can’t overlap partitions. Partitions are added when
the fileserver is created or when a new disk is added to a filesystem.

3.5 Volume cloning and read-only clones

A clone of volume is often needed for the volume operations. A clone is copy-on-write copy of
a volume, the clone is the read-only version.

A two special versions of a clone is the read-only volume and the backup volume. The read-only
volume is a snapshot of a read-write volume (that is what a clone is) that can be replicated
to several fileserver to distribute the load. Each fileserver plus partition where the read-only is
located is called a replication-site.

The backup volume is a clone that typically is made (with vos backupsys) each night to enable
the user to retrieve yestoday’s data when they happen to remove a file. This is a very useful
feature, since it lessen the load on the system-administrators to restore files from backup. The
volume is usually mounted in the root user’s home directory under the name OldFiles. A special
feature of the backup volume is that inside it you can’t follow mountpoint.

3.6 Mountpoints

The volumes are independent of each other. To clue the together there is a ‘mountpoint’s.
Mountpoints are really symlink that is formated a special way that points out a volume (and a
optional cell). A AFS-cache-manager will show a mountpoint as directory, in fact it will be the
root directory of the target volume.

3.7 Callbacks

Callbacks are what enable the AFS-cache-manager to keep the files without asking the server if
there is newer version of the file.

A callback is a promise from the fileserver that it will notify the client if the file (or directory)
changes within the timelimit of the callback.

For read-only callbacks there is only callback given its called a volume callback and it will be
broken when the read-only volume is updated.

The time range of callbacks range from 1 hour to 5 minutes depending of how many user of the
file exists.

3.8 Volume management

All volume managment is done with the vos-command. To get a list of all commands ‘vos help’
can be used. For help on a specific vos subcommand, ‘vos subcommand -h’ can be used.

• Create

Chapter 3: Organization of data 8

vos create mim c HO.staff.lha.fluff -quota 400000

• Move
Volumes can be moved from a server to another, even when users are using the volume.

• Replicate
Read-only volumes can be replicated over several servers, they are first added with vos
addsite, and the replicated with vos release out over the servers.

• Release
When you want to distribute out the changes in the readwrite volume.

• Remove
Volumes can be removed
Note that you shouldn’t remove the last readonly volume since this make clients misbehave.
If you are moving the volume you should rather add a new RO to the new server and then
remove it from the old server.

• Backup and restoration of volumes.
vos backup and vos backupsys creates the backup volume.
To stream a volume out to a ‘file’ or ‘stdout’ you use vos dump. The opposite command
is named vos restore.

3.9 Relationship between pts uid and unix uid

foo

Chapter 4: Parts of Arla 9

4 Parts of Arla

Caution: This text just tries to give a general picture. For real info read the code.
If you have any questions, mail arla-drinkers@stacken.kth.se.

How does arla work

Arla consists of two parts, a userland process (arlad) and the kernel-module (xfs).

Arlad is written in user-space for simpler debugging (and less rebooting). As a uset space
program arlad does not have the same limitations as if it would be written in the kernel. To
avoid performance loss as much as possible, xfs is caching data.

xfs and arlad communicate with each other via a char-device-driver. There is a rpc-protocol
currenly used specially written for this (‘arlad/message.c’)

xfs is written to be as simple as possible. Theoretically, xfs could be used by other user-space
daemons to implement a file system. Some parts, such as syscalls, are arla-specific. These parts
are designed to be as general as possible.

For example, xfs does not recognize which pioctl the user-level program calls, it just passes this
information on to arlad.

The relation between Arlad and XFS

Userland

Edit file | Arlad | ------> Network

| ---------
----|-----------------|[1]----
------- -------

Kernel | VFS | <--[2]--> | XFS |
------- -------

[1] A char device (/dev/xfs0)
[2] Xfs provides a filesystem for the vfs-layer in

the operating system.

4.1 The life of a file

Step by step description of what happens during the creation of a file. The names are inspired
of BSD-style VFS-layer but the idea is the same in most operating systems.

• The user decides to open a file.
• open(2) syscall is issued.
• The vfslayer sends a VOP LOOKUP to xfs that is forwarded to arlad with a getnode()

(seq-num 1).
• arlad tries to find the requested file and then, if found, sends an install node to xfs by

writing to the xfs character device.

Chapter 4: Parts of Arla 10

• xfs inserts the node into the cache and returns from the device write.
• arlad sends a wakeup rpc message (seq-num 1) to xfs. If the return value is zero xfs tries

to find the node in the cache, if not found it might have been flushed out of the cache and
the whole thing is repeated.

• If a none-zero return value is returned, this value is sent as reply to the user. This way arla
can decide what error message is returned, without xfs having support for each error.

• xfs now checks if it has the valid attributes. If the attributes are invalid, xfs will send a rpc
message to arlad to refresh it.

• Since the user wanted to open the file, a getdata rpc message is sent from xfs to arlad. Now
arlad fetches the files from the afs file server.

• Arlad stores the file in the file cache. All vnode operations will be done on this file. Now
arlad sends a installdata to xfs.

• When xfs recives the installdata it looks up the node in the cache, and then it does a
VOP LOOKUP to find a vnode to the cachefile (and store it to keep it for future use).

• The same thing is done when the file is a directory, except that the directory is converted
from the afs directory format to an operating system dependent format and stored in a file.
xfs reads this file instead.

• If the directory is modified locally, write operations are done on the file obtained from the
afs-server, and when done the newly changed file is converted and reinstalled.

• Now the user wants to read a file.
• read(2) system call is issued.
• A VOP READ is sent to the from the vfs-layer to xfs.
• xfs checks if it has valid attributes/and data (and updates if needed). Now VOP READ is

simply performed on the stored vnode of the cachefile.

Tools and libs

What other tools does the arla suite consists of

libutil: util/libutil.a - A library for the most often used
modules like hashtable, double-linked list, logging functions, date-parsing, etc

rx: rx/librx.a - The library for the rx protocol
(see Section 4.2 [Rx protocol], page 11).

lwp: lwp/liblwp.a - The library for the lwp thread-package
(see Section 4.3 [LWP], page 11).

ydr: ydr/ydr - A stub generator that replaces rxgen.
rxkad: rxkad/librxkad.a - The rx Kerberos authentication package.
roken: lib/roken/libroken.a - The library that will unbreak

things that are missing or broken.
ko: lib/ko/libko.a - A library of functions that are arlad-core

related but also are useful for programs like vos, pts, fs, etc.
arlalib: appl/lib/libarlalib.a - A broken library that does all

the hard work with connections etc.
fs: appl/fs/fs - The fs util, extra feature

(amongst others): getfid.
vos: appl/vos/vos - The vos util.
pts: appl/pts/pts - The pts util, extra feature: dump.
udebug: appl/udebug/udebug - Debug your ubik server.

Chapter 4: Parts of Arla 11

4.2 Rx protocol

Rx is run over UDP.

One of rxgen or ydr is used to generate stub-files, ydr is better since it generates prototypes,
too.

The current implemetation of rx it not that beautiful.

4.3 LWP

LWP is a preepmtive thread package. It does it’s context-switching by creating a private stack
for each thread. The heart of the package is select(2).

The core of the package is ‘process.S’. Its currenty built with a bourne-shell file. ‘Process.s’
is preprocessed with cpp and then given to (g)as. The magic how to build this file a portable
way is not fun.

The stack is checked for overruns in context-switches, but that is often too late. It might be an
idea to add a red zone at the top of the stack to be able to detect overruns.

For architectures not supported by LWP, it can be exchanged with the pthreads pakage.

4.4 The files in arlad/

This is a short describtion of the files to bring new deveplopers up to speed.

4.4.1 The core of arlad

‘adir.c’ - contains all functions needed to to operations
on afs-directory files.

‘afsdir_check.c’ - check if an AFS-directory looks sane.
‘arla.c’ - The startup and the standalone (-t) code.
‘arladeb.c’ - The logging code specific to arla, like aliases

for debugging masks.

‘cmcb.c’ - The callback-server that is contacted by the
server when a callback expires or a server wants to send an InitCallBackState.

‘conn.c’ - The connection cache, responsible for caching connection
based on pag and security index. It will also create new connection when needed.

‘cred.c’ - Keep track of all credentials that all users have
inserted. Indexed on pag.

‘fbuf.c’ - An interface between rx and filedescriptors. It is also
used to mmap files. Used by ‘adir.c’.

‘fcache.c’ - Responsible for keeping track of files in the cache.
Also fetches files from the afs-server.

‘fprio.c’ - Tries to give files priority. These files are
therefore not garbarge-collected as fast as they would be otherwise. If you wonder
what this is for, think of the disconnected mode.

Chapter 4: Parts of Arla 12

‘inter.c’ - An interface to hide all junk in fcache, just give
the items a VenusFid and you can access them this way.

‘kernel.c’ - The interface between arlad and the char-device.
‘messages.c’ - The rpc interface between arlad and xfs.
‘volcache.c’ - Cache for all volumes.

4.4.2 Operating system specific files

These are the files that contain operating specific functions. Today it’s just conv dir().

‘aix-subr.c’ - AIX
‘bsd-subr.c’ - FreeBSD 2.2.6, OpenBSD 2.2, 2.3, NetBSD 1.3.x
‘hpux-subr.c’ - HPUX
‘irix-subr.c’ - Irix
‘linux-subr.c’ - Linux 2.0.x, 2.1.x, 2.2
‘solaris-subr.c’ - Solaris 2.5.x, 2.6, 7
‘sunos-subr.c’ - SunOS
‘unknown-subr.c’ - Stub used when compiled on a unknown OS.

pioctl and kafs

The pioctl interface is the only part of xfs that is afs related.

pioctl is a ioctl but called with a path instead of a filedescriptor. When you probe if there is a
live afsclient you first run k_hasafs() that probes if there is an afsclient around. It also sets up
some static variables in the library. So if you start to do pioctl() w/o running k_hasafs(),
you’re up to funny errors, and/or get a corefile.

k_hasafs() does an AFSCALL_PIOCTL with opcode VIOCSETTOK and insize == 0, ie you try to
set a token (ticket) that is 0 bytes long. This is cleary invalid and kafs expects to find an EINVAL
returned from syscall(2).

The pioctl is used more then just for AFSCALL_PIOCTL, an other use is AFSCALL_SETPAG (setting
pag). It has also been in use for setting xfs debugging levels.

When xfs discovers that a path is given in the pioctl() it does a VOP_LOOKUP on the path and
if the returned value is a vnode that resides in afs then it extracts the xfs-handle for that node
(that just happens to be the VenusFid) and passes that on to arlad.

The only ugly thing about the current implentation is that the syscall code assumes that the
arlad on "xfs-fd" is the arlad that should get this syscall.

An example of using pioctl():

int
fs_getfilecellname(char *path, char *cell, size_t len)
{

struct ViceIoctl a_params;

a_params.in_size=0;
a_params.out_size=len;
a_params.in=NULL;
a_params.out=cell;

Chapter 4: Parts of Arla 13

if (k_pioctl(path,VIOC_FILE_CELL_NAME,&a_params,1) == -1)
return errno;

return 0;
}

int
main (int argc, char **argv)
{

char cell[100];

if (!k_hasafs())
errx (1, "there is no afs");

if (fs_getfilecellname (".", cell, sizeof(cell)))
errx (1, "fs_getfilecellname failed");

printf ("cell for ‘.’ is %s", cell);
return 0;

}

Chapter 5: Debugging 14

5 Debugging

This chapter of the manual includes tips that are useful when debugging arla.

Arla and xfs contains logging facilities that is quite useful when debugging when something goes
wrong. This and some kernel debugging tips are described.

5.1 Arlad

If arlad is run without any arguments arlad will fork(2) and log to syslog(3). To disable forking
use the –no-fork (-n) switch. In the current state of the code, arlad is allways to be started
with the recover (-z) switch. This will invalidate your cache at startup. This restriction may be
dropped in the future.

To enable more debuggning run arla with the switch –debug=module1,module2,... One useful
combination is

--debug=all,-cleaner

The cleaner output is usully not that intresting and can be ignored.

A convenient way to debug arlad is to start it inside gdb.

datan:~# gdb /usr/arla/libexec/arlad
(gdb) run -z -n

This gives you the opportunity to examine a crashed arlad.

(gdb) bt

The arla team appreciates cut and paste information from the beginning to the end of the bt
output from such a gdb run.

To set the debugging with a running arlad use fs arladeb as root.

datan:~# fs arladeb
arladebug is: none
datan:~# fs arladeb almost-all
datan:~#

By default, arlad logs through syslog if running as a daemon and to stderr when running in the
foreground (with --no-fork).

5.2 Debugging LWP with GDB

For easy tracing of threads we have patch (http://www.stacken.kth.se/projekt/arla/gdb-4.18-backfrom.diff
) for gdb 4.18 (a new command) and a gdb sequence (think script).

The sequence only works for i386, but its just matter of choosing different offset in topstack to
find $fp and $pc in the lwp ps internal part of the sequence.

You should copy the ‘.gdbinit’ (that you can find in the arlad directory in the source-code)
to your home-directory, the directory from where you startat the patched gdb or use flag -x to
gdb.

Your debugging session might look like this:

http://www.stacken.kth.se/projekt/arla/gdb-4.18-backfrom.diff
http://www.stacken.kth.se/projekt/arla/gdb-4.18-backfrom.diff

Chapter 5: Debugging 15

(gdb) lwp_ps
Runnable[0]
name: IO MANAGER
eventlist:
fp: 0x806aac4
pc: 0x806aac4
name: producer
eventlist: 8048b00
fp: 0x8083b40
pc: 0x8083b40

Runnable[1]
[...]
(gdb) help backfrom
Print backtrace of FRAMEPOINTER and PROGRAMCOUNTER.

(gdb) backfrom 0x8083b40 0x8083b40
#0 0x8083b40 in ?? ()
#1 0x8049e2f in LWP_MwaitProcess (wcount=1, evlist=0x8083b70)

at /afs/e.kth.se/home/staff/lha/src/cvs/arla-foo/lwp/lwp.c:567
#2 0x8049eaf in LWP_WaitProcess (event=0x8048b00)

at /afs/e.kth.se/home/staff/lha/src/cvs/arla-foo/lwp/lwp.c:585
#3 0x8048b12 in Producer (foo=0x0)

at /afs/e.kth.se/home/staff/lha/src/cvs/arla-foo/lwp/testlwp.c:76
#4 0x804a00c in Create_Process_Part2 ()

at /afs/e.kth.se/home/staff/lha/src/cvs/arla-foo/lwp/lwp.c:629
#5 0xfffefdfc in ?? ()
#6 0x8051980 in ?? ()

There also the possibility to run arla with pthreads (run configure with –with-pthreads).

5.3 xfs

XFS debugging does almost look the same on all platforms. They all share same debugging
flags, but not all are enabled on all platforms.

Change the debugging with the fs xfsdebug command.

datan:~# fs xfsdebug
xfsdebug is: none
datan:~# fs xfsdebug almost-all
datan:~#

If it crashes before you have an opportunity to set the debug level, you will have to edit ‘xfs/your-
os/xfs_deb.c’ and recompile.

The logging of xfs ends up in your syslog. Syslog usully logs to /var/log or /var/adm (look in
/etc/syslog.conf).

5.4 xfs on linux

Chapter 5: Debugging 16

There is a problem with klogd, it’s too slow. Cat the ‘/proc/kmsg’ file instead. Remember to
kill klogd, since the reader will delete the text from the ring-bufer, and you will only get some
of the message in your cat.

5.5 Kernel debugging on BSD

Kernel debugging on NetBSD, OpenBSD, and FreeBSD are almost same. You get the idea when
when looking at the exampel from NetBSD below.

(gdb) file netbsd.N
(gdb) target kcore netbsd.N.core
(gdb) symbol-file /sys/arch/i386/compile/NUTCRACKER/netbsd.gdb

If you want to use the symbols of xfs, there is a gdb command called add-to-symboltable that is
useful. The symbol file is obtained by loading the kernel module xfs with kmodload -o /tmp/xfs-
sym. This in only used for NetBSD and OpenBSD. FreeBSD have symolparser in the kernel
module (elf)loader, no one of this magic is needed. The addres can you get from lkmstat (it’s
the area field).

You should also source the commands in /sys/gdbscripts to get commands like xps (ps inside
gdb).

: lha@nutcracker ; modstat Type Id Off Loadaddr Size Info Rev Module
Name DEV 0 29 ce37f000 002c ce388fc0 1 xfs_mod [...]
[...]
(gdb) add-symbol-table xfs.sym ce37f000

One of diffrencies between the BSD’s are the proc, a command that enables you do to a backtrace
on all proc. On FreeBSD you give the proc command a ‘pid’, but on NetBSD and OpenBSD
you give a pointer to a struct proc.

An important thing to know is that you can debug a live kernel too, this can be useful to find
deadlocks. To attach to a kernel you use a command like this:

(gdb) file /netbsd
(gdb) target kcore /dev/mem
(gdb) symbol-file /sys/arch/i386/compile/NUTCRACKER/netbsd.gdb

5.6 Darwin/MacOS X

You’ll need two computers to debug arlad/xfs on darwin since one use remove kernel debugger
over ip.

First you need to publish the arp-address of the computer that you are going to crash.

We haven’t found any kernel symbols with MacOSX Public Beta, so you should probably build
your own kernel. Use Darwin xnu kernel source with cvs-tag: Apple-103 (not xnu-103).

gdb xfs.out
target remote-kdp
add-symbol-table ...
attach <host>

Chapter 6: Porting 17

6 Porting

The largest part of the work needed to port Arla to a new operating system is in porting xfs,
as kernel programming always is harder, less portable and messier than user-space dito. Arla in
test mode (arla-cli) should work without any porting on any system that’s not very far away
from Unix and that provides berkeley sockets (including cygwin32). The hard part is porting
the XFS kernel module, and we will spent most of this text on how to do that.

6.1 user-space

The user-space parts should work on basically any system that is reasonably Posix and has
berkeley sockets. The build uses autoconf and should adapt itself to most forseeable circum-
stances. If it fails to consider something that is missing or not working on the particular OS
you are porting to, hard-code it to make sure that is what is missing and then try to create an
autoconf test for it. If you fail to do so, or have no autoconf experience, send us the patches
anyway and tell us where you are having the problem.

6.1.1 LWP

The only thing that might take a little bit more effort in porting is the context-switch in the
LWP user-level threads package. There are assembler versions for most of the common ar-
chitectures in ‘lwp’. Part of the problem is getting this code assembled properly. There is
unfortunately no easy and portable way of preprocessing and assembling code. There is a script
‘lwp/make-process.o.sh’ that tries to do in some different ways, but it may fail for you. Next
problem is that assembler syntax can vary a lot even on the same CPU. The source files are
written in such a way that they should be acceptable to almost any syntax, but if it fails you
have to find out what particular syntax has to be used and adapt the source file for that.

The more interesting problem is if there is no support for your CPU. The first thing to try then
is the --with-pthreads option that uses the pthreads library. If that fails or you want LWP
working you have to figure out enough details on your CPU to write two functions in assembler,
‘savecontext’ and ‘returnto’ that save and restore the processor context.

6.2 XFS

1. It helps to have source code for your operating system.
In theory, if stuff was documented well enough, you wouldn’t need it. In practice it never
is, so you find out interfaces specs and how stuff works by reading the source code. If you’re
unable to find source code for your OS, try finding source for the closest match. If your OS
is based on BSD, try the appropriate version of BSD, for example.

2. If you don’t have source, try second best, include files.
You can usually gather quite a lot of information on the workings of the kernel by reading
the includes files in ‘<sys/*.h>’.

3. Be lazy
Try to find out what other XFS port is most similar to your OS and start with that code.

4. Figure out how your kernel works.
You need to figure out how a few things work in your kernel:

Chapter 6: Porting 18

1. Loading/unloading kernel modules
That varies quite a lot but it’s probably easy to figure out if you have the source code
for some other loadable module. Sometimes you can get the kernel to add your cdev,
system call and file system automatically but usually you have to write code in your
‘entry-point’ to add these to the appropriate tables.

2. Adding a new character device driver
The kernel has a table of all known device drivers, ordered by major number. Some
kernels have one for block devices and one for character devices and some have a
common one. That entry usually consists of a number of function pointers that perform
the operations (open, close, read, write, ...), and possible a name and some flags. It
could look something like the following:

struct cdevsw {
int (*d_open)();
int (*d_close)();
...
};

struct cdevsw cdevsw[];

These are then usually stored in a table ‘cdevsw’ indexed by the major device number.
If you’re really lucky there’s a new way to get the kernel to add your ‘struct cdevsw’ to
the global table when loading the module or a function that does the addition for you.
Otherwise there might be functions for adding/removing devices to the global table.
If not, you’ll have to fallback on looking for a free slot in the table and putting your
struct cdevsw there. In some cases, this is not stored in a table but then there’ll be a
way of adding entries to the new data structure so you don’t need to worry about it.

3. Adding a new system call
This is quite similar to adding a new cdev but the table is usually called ‘sysent’ instead.

4. Adding a new file system
Once again, quite similar in principle. The names of the structures tend to vary quite
a lot more.

5. Finding out how the VFS/Vnode switch works
The structure vfsops contains function pointers for all of the file system operations.
You need to figure out what operations you need to implement (usually at least mount,
unmount, root, sync, and statfs).
The operations that are performed on files are vnode operations (usually stored in a
struct vnodeops), and you need to figure which of these you need and how they should
work. Also, which is not as explicit, how vnodes are supposed to be allocated and freed
and such.

5. Suggested plan of action
1. Start by writing a minimal hello-world module and make sure you can load and unload

it properly.
2. Then add a device driver to the module which dummy functions and verify that works.
3. Try to fit the device driver functions in ‘xfs_dev.c’ into the device driver.
4. Do a dummy module with a system call and verify that you can call it.
5. Start trying to add enough of the vfs/vnode operations from ‘xfs_vfsops.c’ and

‘xfs_vnodeops.c’ so that you can build it.
6. Debug it.
7. Send us patches

Chapter 7: Oddities 19

7 Oddities

7.1 AFS

• Directories - UnixModeBits are ignored when the vnode is a directory.
• Errnos are sent over the network. Like Solaris ENOTEMPTY(93) doesn’t even map to an

error on sunos4 where ENOTEMPTY is 66.
• Mountpoints have the mode-bits 0644, if they don’t they are symlinks (and have the mode-

bits 0755).

7.2 Operating systems

• On Irix 6.5 you have to build the dirents depending on what ABI of the binary you are
currently running.

• . and .. need to be first in directories, this is needed since some programs (like make)
"knows" that the two first entries are . and .. and thus can be skiped.

• Reclen (in struct dirent) shouldn’t be too large. When its larger then the buffer used in
opendir/readdir/closedir, you loose.

Chapter 8: Arla timeline 20

8 Arla timeline

Arla have existed for quite some years.

Development started around XXX by Björn Grönvall bg@nada.kth.se, quick follow-
ers was Assar assar@sics.se (at that time assar@pdc.kth.se>) and Johan Danielsson
<joda@pdc.kth.se. The platform that was chosen was Sparc SunOS4 (the OS that NADA,
KTH was using).

Some work was being done by Patrik Stymne patriks@e.kth.se in porting arla to Ultrix, but
this work was never finished.

At this time there was no free rx, lwp or rxkad. A basic rx implementation was written, and
the threading problem was solved by using pthreads.

The Arla development started to slow down around 11 April 1995.

In about Mar-Jun 1996 rx and lwp was released by Transarc, this was made possible by Jim
Doyle jrd@bu.edu, and Derrick J. Brashear shadow@dementia.org.

In September 1997, an rxkad implementation was written by Björn. At the same time, a need
for an AFS client for OpenBSD rose at the Stacken, the local computer club at KTH. Other
free OS:es, as NetBSD, FreeBSD and Linux(primarily sparc) were also in need of AFS clients.

In TokKOM, a local communications system using LysKOM (http://www.lysator.liu.se/lyskom/
), Assar suggested to some club members that it would be a nice thing to resume the arla de-
velopment.

Some people suggested that it would be less trouble having someone with access to the Transarc
AFS source code port the code to the relevent platforms. Assar then ported xfs to FreeBSD
2.2.x in notime, just to show the high portability.

People started to understand that arla was a concept that would work, and first out was
Love Hörnqvist-Åstrand lha@stacken.kth.se to join. Development was primarily aimed at
OpenBSD and NetBSD at the moment, and Arla lived for at least 2-3 weeks in /var/tmp on a
host named yakko.stacken.kth.se.

Magnus Ahltorp map@stacken.kth.se joined shortly thereafter, spending the rest of the year
reading about the Linux VFS, and after a while, Artur Grabowski art@stacken.kth.se also
started to work on arla, concentrating on OpenBSD kernel stuff.

The first entry in ChangeLog is dated Fri Oct 24 17:20:40 1997. Around this time arla was
given a CVS tree, to ease development. Now you could also mount the xfs-device and get the
root-directory out of it.

The Linux port was done in a few weeks in the beginning of 1998. Only the Linux 2.0 kernel
was supported at this time.

In April 1998 Assar hade a Arla paper presented at Freenix. Linux 2.1 support was written also
written around this time. This was a major work since there was a lot of stuff that had changed
(namely the dcache).

The first milko entry is dated Thu Oct 30 01:46:51 1997. Note that this milko in a sense
"worked". You could get files out from it and store them.

There was from this point a lot of work being done and quite a lot of studies was "wasted". We
learned a lot, but not the stuff we were expected too.

In Mars 2000 preliminary support for MacOS X/Darwin 1.0 was merged in by Magnus and
Assar.

http://www.lysator.liu.se/lyskom/
http://www.lysator.liu.se/lyskom/

Chapter 8: Arla timeline 21

Around the same time there we hacked in support for Solaris 8 (beta2) There was also some
work being done on Windows 2000 native driver at same time.

In June 2000 there was a presentation on MADE2000 in Gothenburg, Sweden.

This just includes some milestones, for more information se Changelog.* and NEWS files in the
distribution.

Chapter 9: Authors 22

9 Authors

Currently writing on arla are

Assar Westerlund, Everything
Magnus Ahltorp, Everything
Artur Grabowski, BSD xfs, OpenBSD maintainer
Love Hörnquist-Åstrand, Everything
Robert Burgess, fs, Solaris xfs
Johan Danielsson, OSF/1 xfs
Hans Insulander, pts, OpenBSD maintainer
Mattias Amnefelt, vos, milko
Harald Barth, doc
Tomas Olsson, milko
Mikael Vidstedt (userland, some milko stuff)
Jimmy Engelbercht (bos)

Rhapsody xfs port was contributed by Alexandra Ellwood <lxs@MIT.EDU> Previously, Rhap-
sody named Darwin.

Disconnected code is written by:

WUWEI SHEN <wwshen@engin.umich.edu>
Cheng Jin <chengjin@eecs.umich.edu>
Paul Callaway <pcallawa@umich.edu>

For more contributors look in the THANKS file in the distribution on ftp://ftp.stacken.kth.se/pub/arla/
.

ftp://ftp.stacken.kth.se/pub/arla/
ftp://ftp.stacken.kth.se/pub/arla/

Appendix A: Acknowledgments 23

Appendix A Acknowledgments

lwp and rx are copyrighted by IBM. We’re grateful to Derrick J Brashear shadow@dementia.org
and Jim Doyle jrd@bu.edu for making them available.

the rxkad implementation was written by Björn Grönvall bg@sics.se and is also part of the
kth-krb distribution.

Some of the files in ‘libroken’ come from Berkeley by the way of NetBSD/FreeBSD

editline was written by Simmule Turner and Rich Salz.

The code for gluing these together were written by ourselves.

Bugfixes, documentation, encouragement, and code has been contributed by:

Aaron M. Ucko
amu@MIT.EDU

Alec Wolman
wolman@cs.washington.edu

Alexandra Ellwood
lxs@MIT.EDU

Brad Keryan
keryan@andrew.cmu.edu

Constantine Sapuntzakis
csapuntz@openbsd.org

Dan Winship
danw@MIT.EDU

Derrick J Brashear
shadow@dementia.org

Harald Barth
haba@pdc.kth.se

Jim Doyle jrd@bu.edu

John Davison
davisoja@clarkson.edu

John Hawkinson
jhawk@MIT.EDU

Karl Ramm
kcr@MIT.EDU

Mark Eichin
eichin@kitten.gen.ma.us

Per Boussard T/ED
Per.Boussard@era-t.ericsson.se

Dima Ruban
dima@best.net

Max davros@cyclone.Stanford.EDU

Andrzej Filinski
andrzej@daimi.aau.dk

Appendix A: Acknowledgments 24

Chuck Lever
chuckl@netscape.com

WUWEI SHEN
wwshen@engin.umich.edu

Cheng Jin chengjin@eecs.umich.edu

Paul Callaway
pcallawa@umich.edu

Brandon S. Allbery
allbery@ece.cmu.edu

Ken Raeburn
raeburn@raeburn.org

Jeffrey Hutzelman
jhutz+@cmu.edu

Hee-Seok Heo
hsheo@postech.ac.kr

Paul Ewing Jr.
ewing@ima.umn.edu

Niklas Hallqvist
niklas@appli.se

Marko Asplund
aspa@hip.fi

Chris Wing
wingc@engin.umich.edu

Simon Josefsson
jas@pdc.kth.se

Magnus Lindström
magnus.lindstrom@s3.kth.se

Greg Stark
gsstark@mit.edu

Matt deberg@mit.edu

Björn Grönvall
bg@sics.se

Tino Schwarze
tino.schwarze@informatik.tu-chemnitz.de

David Sanderson
david@transarc.ibm.com

Roman Hodek
Roman.Hodek@informatik.uni-erlangen.de

Michael Sperber
sperber@informatik.uni-tuebingen.de

Dr. Lex Wennmacher
wennmach@geo.Uni-Koeln.DE

Janne Johansson
jj@dynarc.se

Appendix A: Acknowledgments 25

Dr A V Le Blanc
LeBlanc@mcc.ac.uk

Dave Morrison
dave@bnl.gov

If you have done something and are not mentioned here, please send mail to arla-drinkers@stacken.kth.se.

If you are mentioned here and have not contributed, that’s because we expect you to.

	Introduction
	What is Arla?
	Status
	Bug reports
	Mailing list

	Description of AFS infrastructure
	Server overview
	Basic overseer - boserver
	Ubik
	Volume Location database server - vlserver
	Protection server - ptserver
	Kerberos server - kaserver
	Backup server - buserver
	Update server - upserver
	Fileserver and Volume Server - fs and volser
	Salvage
	Things that milko does differently.

	Organization of data
	Requirements
	Anti-requirements
	Volume
	Partition
	Volume cloning and read-only clones
	Mountpoints
	Callbacks
	Volume management
	Relationship between pts uid and unix uid

	Parts of Arla
	The life of a file
	Rx protocol
	LWP
	The files in arlad/
	The core of arlad
	Operating system specific files

	Debugging
	Arlad
	Debugging LWP with GDB
	xfs
	xfs on linux
	Kernel debugging on BSD
	Darwin/MacOS X

	Porting
	user-space
	LWP

	XFS

	Oddities
	AFS
	Operating systems

	Arla timeline
	Authors
	Acknowledgments

