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Abstract

Arla is a free implementation of the distributed file system AFS. AFS sup-
ports read-only replication of files. To improve the functionality Arla could
be equiped with read-write replication. The goal of this degree project is to
study the possibilities of implementing read-write replication in Arla while
keeping Arla compatible with AFS. Several replication algorithms and other
file systems with read-write replication are studied for ideas. Options for
implementing read-write replication in Arla are listed and two concrete pro-
tocols are recommended.

Sammanfattning

Arla dr en fri implementation av det distribuerade filsystemet AFS. AFS
stodjer lasreplikering av filer. For att fobéattra funktionaliteten kan Arla ut-
rustas med mojligheter till skrivreplikering av filer. Syftet med detta exa-
mensarbete ér att studera mdjligheterna till att implementera skrivreplike-
ring i Arla med bibehallen AFS-kompatibilitet. Flera replikeringsalgoritmer
och filsystem med skrivreplikering studeras. Flera alternativ fér implemen-
tering av skrivreplikering i Arla beskrivs och tva konkreta protokoll rekom-
menderas.
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Chapter 1

Introduction

The file system is an important part of the operating system. It handles the
storage and access of data on physical disk. It can also contain mechanisms
for access control and other services for the user. To increase the performance
and scalability of a file system it can be distributed. In distributed file
systems one or several file servers store the files and clients can access the
same files from any place in the network without knowing exactly which
server or disk the files are stored on.

When a distributed file system grows the load on the file servers increases.
There is also always a risk that a server fails and the data on that server
becomes temporarily unavailable. A remedy for both high load and server
failures is replication, which means that each file is stored on several servers
simultaneously. Then users can get the same files from another file server if
one server fails or gets too high load.

Many distributed file systems have support for replication of read-only
files, since read-only files are seldom updated but frequently read. Some file
systems have support for replication of all files, which takes a bit more effort.
The contents of the files should be kept consistent, which isn’t trivial. Also
the propagation of updates to the other replicas can get costly if updates are
frequent.

Arla is a clone of the distributed file system AFS. AFS implements read-
only replication of files. To improve the functionality of Arla it could be
equipped with read-write replication. The implementation would have to be
transparent to the client, since AFS clients must be compatible with Arla
servers and vice versa.

The goal of this degree project is to study the possibilities of implement-
ing read-write replication in Arla. It includes studies of different replication
algorithms, case studies of other file systems with read-write replication and
a study of AFS and Arla. The reasonable options for implementing read-
write replication in Arla will be presented together with recommendations.
The final choice of implementation will be left to the Arla implementors.
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1.1 Terminology

Since different authors use different terms for the same things it has some-
times been difficult to choose which terms to use. In the cases when a new
algorithm is described I will often use the same terms as the authors used in
their paper. For some more common terms I have tried to be consequent.

A server can often either mean a physical machine or a server process.
Here a server is a server process, and a server machine is a physical machine
that runs one or several server processes. In this paper a “node” or a “replica”
is a server storing a replica of a certain file. Some may prefer to call it a
“site”, but since that can nowadays have so many meanings I will not use it
as a synonym to a replicating server.

A word which can often cause confusion is “partition”, since it can both
mean a part of something or the event when something is split in several
parts (or rather partitions). Also, in a computer environment, a partition
can either be a part of a disk, a network being split up in two or a part of
a split-up network. In this paper the partitions are mostly about networks,
but there are also a couple of references to disk partitions. When a part
of a network is meant, the word “partition” is used. The partition event is
mostly referred to as a “network partition”. A partition of a hard disk is a
“disk partition”. Hopefully also the context can help deciding which one is
meant.



Chapter 2

Plan

This report starts with an introduction including a section about terminol-
ogy. Chapter two, that you are currently reading, is a plan of the report.
Chapter three is a brief introduction to distributed file systems for those
readers who wish to refresh their memories. Chapters four and five are in-
troductions to AFS and Arla respectively. Thereafter follows the study of
read-write replication in general in chapter six and replication algorithms in
chapter seven. Chapter eight briefly describes some efforts to evaluate, com-
pare and optimize algorithms. Case studies of other replicating file systems
can be found in chapter nine. In chapter ten the possibilities for implement-
ing replication in Arla are discussed. My recommendations can be found in
chapter eleven. Finally there is an appendix with some pseudo-code for the
recommended replication algorithms.

11
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Chapter 3

Introduction to Distributed
File Systems

3.1 Overview

The file system is a part of the operating system and handles file access.
The user often sees the files represented by file names and ordered into
hierarchical directories. When a user opens a file the file system finds the file
in the storage system and returns a file handle to the user so that the user
can access the data. The file system takes care of all the technicalities that
the user doesn’t want to know about. Many file systems also handle things
like security and access control.

Most modern operating systems have a built-in file system. There are also
many file systems which can be used in many different operating systems.
These can work above the built-in operating system or parallel to it, more
or less replacing it.

A distributed file system is basically a file system where the files can
be transparently stored on several servers instead of one. The user doesn’t
have to have any idea of which server physically stores the files he or she
currently is accessing. The user still sees a collection of file names ordered
in hierarchal directories while the files actually can be stored on a collection
of servers all across the world.

The advantages of distributed file systems are many. First of all a dis-
tributed file system is more scalable. One single server cannot handle as
many access requests as a group of servers. Second, availability increases.
If one server goes down only a part of the file system becomes unavailable.
With mechanisms like replication the availability can be increased even more.
If one server goes down the data can be accessed from other replicas. Ad-
vantages can also be gained when a site is geographically widely spread by
distributing the servers to different geographical locations. The users see
advantages like being able to access their files from any workstation at their

13
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site and (hopefully) better availability.

There are also many difficulties in the design of distributed file systems.
To meet the increased demand for avaiability and scalability the file system
needs to be more complex. Network load and network failures affect the
access times more than if all users had their data stored only on their work-
stations. Caching and replication schemes can create consistency problems
depending on how updates are propagated and how changes are detected.
Often choices have to be made between consistency, availability and access
times.

3.2 Files and Directories

The data in a file system is stored in files. The file usually has a readable
file name that the user can use to refer to the file. Most file systems also
keep internal file ID:s for the files. Also most file systems store bits of
additional information - metadata - like when the file was last changed, a
version number, the owner of the file etc.

Most file systems organise the files into directories. Directories are special
objects which can contain files or other directories, forming a fully connected
directory tree. The directory tree has a single starting point, called the root
directory.

Insertion of a file into a directory is usually called linking. In some
systems linking and unlinking is automatic and a file can only be linked into
one directory. In other systems a file can be linked to several directories,
which gives the impression that the file resides in several directories at the
same time. If a file is unlinked from all directories it resides in it is removed.

Distributed file systems and also some non-distributed file systems use
mounting (see figure 3.1 and figure 3.2) to build the complete directory tree
from subtrees. Administrative units like disk partitions or volumes contain
each a directory tree, which can be mounted into the file system to form
a complete tree. The first disk partition to be mounted contains the root
directory and is often called the root partition. Some file systems have a
whole set of disjoint trees, each with separate roots. The position in the
directory tree where a subtree is mounted is called a mount point. Many file
systems allow a subtree to be mounted at several mount points at the same
time.

In a distributed file system the directory tree can contain subtrees that
physically reside on different servers. In a correctly designed distributed file
system the user does not have to know the difference between a mount point
and a “ordinary” directory or between mounted subtrees residing on different
disks. All the user has to know is the file’s name and position in the directory
tree. This is what makes a collection of servers running a distributed file
system different from a collection of servers with non-distributed file systems



snoopy/dirl

snoopy

/ (root directory)

Figure 3.1. Example file system before the mounting of the directory
sSnoopy.

"~ mount point

/ (root directory)

Figure 3.2. Example file system with the directory snoopy mounted into
/home.

15
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- in a non-distributed file system the user would have to indicate which server
to access in addition to the file name and position in the directory tree. This
makes it possible to move a subtree in a distributed file system transparently
from one server to another.

3.3 Clients and Servers

Distributed file systems are usually based on clients and servers. Central
servers store the files on disks and communicate with clients residing on
the workstations. The clients receive the file system calls from the users
or applications and forward the requests to a server. When the server has
replied the client forwards the reply to the user or application that issued
the file system call.

Some clients use caching to increase performance. When a file is first
accessed it is kept in the cache on the client, so that subsequent accesses to
the file can be served without calling the server. When caching is used there
must be a way of notifying the clients when a cached file has been changed
on the server. This is done in different ways in different file systems. There
are also many different policies for when to send file updates to a server.
Some file systems send updates at certain intervals while others send them
right away. Some only send changes when the file is closed.

3.4 Security

In multi-user file systems security is often achieved by giving each user a user
name and associating all files with their owners’ user names. The files can
have different levels of access for different users or user groups. The users
can set access rights for their files to allow other users to read or modify
them.

Many modern operating systems use some kind of authentication protocol
and encryption for security. Some protocols like Kerberos are used both for
login and for identification when files are accessed.

3.5 Reading

More about file systems can be found in [29]. [24] is a survey of the dis-
tributed file systems in 1989. Much has changed since then, but the survey
is still interesting as a history lesson. A fresher survey can be found in [26].



Chapter 4

Overview of AFS

4.1 History of the Andrew File System

The construction of the Andrew File System started in 1982 at the Infor-
mation Technology Center (ITC), a collaboration between Carnegie-Mellon
University (CMU) and IBM. The goal of ITC was to develop an inexpen-
sive distributed computing environment for CMU. The project was called
Andrew after the two benefactors of CMU, Andrew Carnegie and Andrew
Mellon. The Andrew File System was one part of the extensive project.

The Andrew system was designed as a crossing between a time-sharing
system with a common file system and communication between users, and
personal computing with constant and high performance. Users should be
able to have the same working environment wherever they are, but still use
the local workstation for doing the computations, thus combining the benefits
of personal computing and time-sharing systems.

The demands on the file system were high. It had to have good security
and authentication and the Andrew system had to be scalable to a very high
number of nodes. Since no existing file system was found good enough the
Andrew File System was created. When the Andrew project’s progress was
presented in [15], the file system was an important part of the project.

The Andrew File System was eventually renamed to its short form, AFS.
There has been three versions of AFS: AFS-1, AFS-2 and AFS-3. When the
development of AFS-3 was started the project was taken over by a spin-off
company called Transarc. AFS is now a commercial product and there are
over 150 AFS cells all around the world connected to the public AFS tree.

4.2 AFS Architecture
The AFS system is basically a client-server system with clients running at

the user workstations and a group of servers with different tasks running on
server machines. It is a transparent distributed file system where the files

17
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are stored on a set of file servers and can be accessed by the user without
knowledge of where the file is physically stored.

Traditionally AFS is run on UNIX based systems, but has also been
ported to other systems like Windows NT.

The following sections describe briefly the basic architecture of AFS and
the functions of the many servers in AFS. A more detailed description can
be found in [30].

4.2.1 Cells

The name space of AFS is divided into cells. Each independent administra-
tive organization that runs AFS has its own cell. A cell contains a set of
client and server machines which belong exclusively to that cell.

A cell can be connected to the common world-wide name space (public
cells), in which case any user from any public cell can access files (according
to access permissions, of course) in that cell. The cell can also be kept locally
(private cells), in which case only users within the cell can access it.

Many administrative operations can only be done within a cell. For
example replication of a read-only volume (see section 4.2.3) can only be
done within a cell. There are no physical limits to the cell’s lay-out. It is
possible to have the servers of a cell spread out across the world or packed
together in a small server-room. Thus it is possible, for example, to have a
replica of a volume both in Los Angeles and in Stockholm, as long as there
is a file server from the same cell in both cities.

4.2.2 Overview of the AFS Servers

Servers in AF'S are user-level processes run on one or several machines. The
servers are: the File Server, the Volume Location Server, the Volume Server,
the Protection Server, the Authentication Server, the Basic OverSeer Server,
the Update Server and the Backup Server. Sometimes also the Salvager is
counted as a server, although it runs only when invoked. The servers are
described below.

Some of the servers maintain databases for keeping information needed
for the service. These databases can be replicated, so that the server can be
run on several machines at the same time. The replication is done with the
Ubik replication package.

4.2.3 Volumes and the Volume Server

The administrative unit of data in AFS is called a volume. A volume contains
connected subtrees of the file system, for example a home directory or a
shared work directory. A volume is smaller than or equal to the size of a
disk partition, so that a disk partition can contain one or several volumes.
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The volume can dynamically vary in size, but has an associated quota, which
is the maximum size of the volume.

There are three types of volumes in AFS: read-write volumes, read-only
volumes and backup volumes. User volumes and other volumes that are
written to often are usually read-write volumes. Read-only volumes can
be replicated and are used for data that seldom changes, such as binaries.
Backup volumes are used for backups.

Volumes are attached to the file system with AFS mount points. The
mounting is transparent and a user can’t directly see the difference between
a directory within the same volume or a directory holding another volume,
except by using special commands. Mounting can also be done between cells.

Since the user-visible names are location-independent the volumes can
be moved from one disk partition to another. This helps in load balancing
and makes it possible to move volumes when they grow and fill up the disk.
Due to a special relocation algorithm the interruption to the file service is
only a few seconds.

A volume can be replicated to other partitions or servers. The replicas are
read-only and any of them can serve a read request for a file in the volume.
This is mostly useful for volumes containing system binaries or other seldom
changed but often accessed data. The replication is initiated by a system
administrator. Updates to the replicas are made in a master volume and
released to the replicas with a special command.

Manipulation of volumes is done through the Volume Server. The system
administrator or the user sends commands to the Volume Server to move
or replicate volumes, ask about the volume’s attributes (like the physical
location or size of the volume) etc..

4.2.4 The Volume Location Server

The Volume Location Server (VL Server) keeps track of which File Server
or File Servers each volume is stored at. For this it maintains a Volume
Location Database (VLDB). Mainly the VL Server answers queries about a
volume’s location and status when a client (Cache Manager) tries to open a
file. The VLDB can be replicated, so that there can be several VL Servers
in one cell.

4.2.5 The File Server

The File Server is responsible for the physical storage of a set of volumes. It
answers calls from the Cache Manager and cooperates with the Protection
Server to check the access permissions for a user. There are usually several
File Servers running in a cell, in which case every File Server has its own set
of volumes to handle. Unless a volume is replicated it is only stored at one
File Server.
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4.2.6 Authentication and the Authentication Server

Authentication in AFS is achieved with the Kerberos authentication system.
Kerberos provides mutual authentication through a third-part authentica-
tion server. The client uses a password to get a ticket from the authenti-
cation server, and then uses the ticket during file system operations. The
ticket is used as an id card to prove that the user is really who he or she
claims to be.

The authentication is managed by a dedicated server, called the Authen-
tication Server. The Authentication Server maintains an Authentication
Database (ADB) in which it stores encrypted user passwords and the en-
cryption key. There can be several Authentication Servers replicating the
ADB in one cell.

4.2.7 Authorization and the Protection Server

In addition to the operating system’s mode bits each directory in AFS has
its own Access Control List (ACL). The ACL provides information about the
access rights for different users and groups. The permission flags that can
be set are Read, Lookup, Write, Insert, Delete, Lock and Administer. The
AFS ACL permissions usually override the operating system’s access control
bits.

An AFS group is a list of users that will be treated according to the
ACL rights for that group. A group can be created by any user, and is
identified with the creator’s user name and a group name. For example the
user charlie can create a group named charlie:friends containing the
users snoopy, lucy and linus. This group can then be given permissions in
directories, which means that all members of the group get those permissions.

There are also some predefined special groups with special characteris-
tics, for example system:anyuser and system:administrators. Permis-
sions set for system:anyuser are valid for anyone trying to access the di-
rectory. The members of system:administrators have automatically the
Administer rights in all directories.

The groups and user id:s are stored in the Protection Database (PDB).
The PDB is maintained by a Protection Server, which is used to create,
modify and delete users and groups and determine which groups a user be-
longs to. The main task of the Protection Server is to help the File Server
to determine if a user has the rights to access a certain file.

4.2.8 The Basic OverSeer Server and the Salvager

The Basic OverSeer Server (BOS Server) is run at each server machine and
is responsible for keeping the servers alive on that machine. It automatically
restarts a server that goes down and can also be used by the administrator
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to take down and restart servers. At system boot it starts up the servers in
correct order.

The BOS Server invokes the Salvager when a File Server or a Volume
Server fails. It can also be invoked manually by the system administrator.
The Salvager tries to repair any disk corruption caused by the failure.

4.2.9 Backup and the Backup Server

The volume is the backup unit in AFS. Each volume can have its own backup
volume containing pointers to files which have not been changed since the
previous backup, and the contents of files which have been modified. The
backup volumes can be transferred to tape at any time before the next
backup.

Backup is handled by the Backup Server. The Backup Server also main-
tains a Backup Database to keep track of the backups. The system admin-
istrator invokes the Backup Server to backup and restore volumes etc.

4.2.10 The Update Server

The Update Server is an administrative tool that can be used to distribute
system upgrades and system files. The Update Server is run at one machine
of each type, and the other machines run an Update Client. The Update
Clients poll the Update Server for news and updates.

4.2.11 The AFS Client

The AFS client which runs on each client machine is called the Cache Man-
ager. It creates an illusion that referenced files from AFS reside on the local
disk. At a request for a file the Cache Manager first contacts the VL Server
to find out at which File Server the file is stored. Then it contacts the File
Server and asks for the file showing the user’s authentication token. When
a file is received it is cached on the local disk before it is passed on to the
application.

A file doesn’t have to be fetched completely. It is possible to fetch only
a chunk of a certain size. The chunk size can be set individually for each
client machine. The default chunk size is 64 kilobytes. There is also support
for prefetching of chunks that are expected to be needed soon.

For cache consistency the Cache Manager uses a callback system. When
a chunk is delivered from a File Server a callback is included. When the file
changes on the server the callback is broken and the Cache Manager knows
that the file has changed on the disk.

Dirty chunks are flushed back to the File Server at a close system call
or with a fsync() system call. Directory data is write-through, which means
that changes are written to disk immediately.
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4.3 Ubik Replication

The databases in AFS use the Ubik replicating database system, described
in [12]. Ubik uses a pessimistic quorum consensus protocol called quorum
completion. The data in Ubik is stored in files, but the whole database is
replicated. The database has an incremental version number.

One node is elected as the synchronizing site. Election is done when a
node recovers from crash or regains contact with nodes it hasn’t had contact
with before. The election is done with a simple election protocol, where
votes are given to the lowest numbered node. The node can change its vote
whenever it likes, but it must wait a certain safety time interval, T, before
voting for the other node.

When a node has been elected it knows that during the T interval it
is guaranteed to be the synchronizing site. It will also send messages to
the other nodes every time interval T, to check that they still are alive and
consider it to be the synchronizing site. As long as the synchronizing site has
heard from the other nodes at most the time T ago it knows that it is still
the synchronizing site. The other nodes promise to wait the time T before
starting a new election or voting for another site.

The synchronizing site must have contact with a majority of the sites, a
write quorum, to continue operation. If it fails to contact the write quorum it
must stop service. Also the members of the write quorum must be contacted
periodically by the synchronizer to be allowed to continue service. If a node
in the write quorum haven’t heard from the synchronizer in the time T it
will start an election.

All writes are directed to the synchronizing site. The synchronizing site
will try to commit the write to the write quorum with a two-phase commit
protocol. If it fails the write will be aborted. Reads can be serviced by any
up-to-date member of the write quorum.

When a new synchronizing site is elected it checks the other nodes to find
the latest version of the database. It then copies the latest version and gives
it a new version number. Then it updates all the nodes in the write quorum.
Since the write quorum must contain a majority of the servers, every pair of
write quora intersect. Thus the new write quorum is guaranteed to have at
least one node that is up-to-date.



Chapter 5

Arla

Arla is a free AFS implementation consisting of a client called Arla and a
server implementation called Milko. Both are still under construction. The
development started as a non-profit project at the computer club Stacken
at the Royal Institute of Technology (KTH) in Stockholm. Nowadays it
involves a large group of people coding, testing and suggesting updates or
corrections. The project is supported by several institutions at KTH and
the Stockholm University.

The first goal of the Arla project was to develop AFS-compatible clients
for platforms not supported by Transarc’s AFS. There are now beta versions
of clients for a wide range of platforms. The client is stable and used in
production. Building Milko is a much larger project and has not come as
far yet. The essential servers have been implemented, but they lack many
features and are unstable.
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Chapter 6

Replication in General

6.1 Why Replicate?

The goals of a distributed file system are usually to provide reliability, avail-
ability and load balancing in an effective way. In small systems and with
stable servers these goals are relatively simple to achieve, but when the sys-
tem grows and since servers aren’t stable you need to find means to improve
quality.

One common problem is too high load on the servers. You can, of course,
buy a faster file server when your old one can’t serve enough people, but there
is also another way. By replicating frequently read files to several servers the
load can be spread out. This also helps users in a wide-spread network, since
users in Los Angeles don’t have to wait for the files to come from Stockholm
if they have a local replica. Replication also increases availability, since you
can read the file from another replica if one replica goes down.

Reliability and availability can be increased even more by allowing writes
to the replicas. With some schemes for read-write replication you can con-
tinue your work as long as there is one replica of your files available.

With read-write replication the system administrator can take any file
server down for maintenance without disturbing the users. Some forms of
read-write replication can make disconnected use easier to implement, and
replication can be used for making backups and easy restores.

6.2 Problems in Read-Write Replication

There are many issues to consider in the design of a read-write replicating
file system. Ultimately most problems lead back to the consistency problem.
How do we ensure that the accessed file is always the latest version? Do we
even want to ensure that?

There are several approaches to read-write replication, and a lot of work
has been done in the area. Some file systems have been implemented using
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read-write replication, but none of them has become widely used yet.

The first choice that is usually made is whether to guarantee consistency
or not. This divides the camp into optimistic replication, where consistency is
sacrificed to achieve highest possible availability, and pessimistic replication,
where consistency is guaranteed at the cost of lower availability.

There are many other small and large decisions to make. Some of them
depend on each other. Choosing a certain solution to one problem automati-
cally solves some other problems, while some solutions create new problems.
Here is a list of the most common problems and some suggested solutions.

e How is a write to a file distributed to all replicas? For example the
client can distribute the update to all servers, in which case it must
know which replicas there are. Alternatively the client only contacts
one server and the update is distributed by the server.

e What do we do when the network is partitioned? In some (pessimistic)
systems only one partition can continue functioning, while other (op-
timistic) systems allow both to continue. If the pessimistic approach
is chosen it leads to the following question:

e Which partition is allowed to continue operation? Usually the partition
which has the majority of the servers will be allowed to operate, though
it is often not as trivial as that.

e What do we do when a server crashes? This question is interesting in
some systems, while it is trivial in others. If the server, for example,
held the master copy of a file, a new master copy must be elected.
Some systems only need to note that the server is down and continue
as usual.

e What happens when a server comes up again? This follows on the
previous question, as does the answer. For example, in a master copy
system a new election might be held, to see if the “new” server could
be master. In some systems the server only needs to be updated with
the latest news and can continue its work.

e What happens when a partitioned network gets connected again? This
is related to the previous question, but also depends on how a network
partition is handled. If only one partition could continue, the servers
in the inactive partition can be treated as if they are recovering from
a crash, but if both continued operation the system must be checked
for inconsistencies.

In the following section the different approaches and algorithms for the
different solutions will be discussed more thoroughly.



Chapter 7

Replication Algorithms

7.1 Overview

There has been a lot of work done in the area of replication algorithms.
Most of it is done for distributed database systems, which can be very large
both in numbers of nodes and geographically. Thus many algorithms are
unnecessarily complicated for file systems, where the number of nodes is
reasonably small (most sites have less than ten file servers) and the servers
often are located close to each other and are seldom partitioned from each
other due to network failures. Most of the algorithms described in this
section are chosen because they can be or even have been implemented for
a file system. A few algorithms and topics have been added to give a better
overall view of replication algorithms.

A replication protocol can be either optimistic or pessimistic. Optimistic
protocols usually use some form of available copy algorithms. Pessimistic
protocols mostly use primary copy algorithms or voting algorithms. Voting
algorithms, including quorum consensus algorithms, are also used in primary
copy algorithms to elect the primary copy. There are many variations of
voting algorithms, giving better availability or performance than the original
voting algorithm. There are also lazy replication protocols using epidemic
algorithms to distribute updates. Update propagation is discussed in one of
the sub-sections.

Another protocol described below is the two-phase commit protocol,
which is commonly used for atomic transactions when distributing updates.
Also the concept of view consistency will be discussed.

Many of the algorithms are quite old and well-known. Those can most
easily be found in algorithm overviews in books etc. since the original pa-
pers can be tricky to find, and it is sometimes even difficult to determine
which paper is the “original”. For this study I have used the overviews and
descriptions in [6].

Some more advanced algorithms and concepts are described further in
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appendix B. Related information can also be found in appendix C, where
some work on evaluating and comparing replication algorithms is studied.

7.2 Optimistic or Pessimistic Replication?

Replication algorithms are often categorized into optimistic algorithms and
pessimistic algorithms. The difference is whether consistency is guaranteed
or not. Optimistic algorithms allow writes to the same data item in sev-
eral disjoint partitions, hoping that conflicts are rare and easily resolved.
Pessimistic algorithms guarantee consistency by allowing updates to a cer-
tain data item in only one partition if the network is partitioned. Most
pessimistic algorithms also hold on to one-copy serializability, which means
that the semantics of a replicated system remain the same as if there was
only one copy of the data.

Optimistic replication usually means that a file is writable as long as there
is some copy available. This gives good availability, in fact about as good
as it can get. On the other hand it gives many opportunities for conflicts
in the file system. Solving these conflicts is in fact the major challenge in
optimistic replication.

When using a pessimistic replication protocol a file is only writable if
consistency can be guaranteed. Pessimistic replication can be achieved with
some sort of voting algorithm or a primary copy algorithm. If the network
is partitioned, this means that at most one partition can continue writing to
a file or sometimes even reading a file.

7.3 Optimistic Algorithms

The most commonly used optimistic replication algorithm is the optimistic
available copy algorithm. In simple terms it means that updates are sent to
all available replicas and reads can be done from any available replica.

Problems arise when the network is partitioned. If conflicting updates
are done in the two partitions the file system becomes temporarily incon-
sistent. When the partitions regain connection the inconsistencies must be
resolved by special resolver processes. Some inconsistencies can not be re-
solved automatically and require manual resolution.

Epidemic and lazy replication schemes are also often optimistic, since
updates are propagated slowly. When a node tries to update another node
it can find inconsistencies which need to be resolved.

Optimistic protocols will be described more in appendix D, where some
optimistically replicated file systems are described.
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7.4 Primary Copy Protocols

Primary copy protocols are pessimistic and use a master replica for each file
or volume. All writes are done to the master replica, which then forwards
the updates to the other replicas. This is illustrated in figure 7.1. In some
primary copy protocols reads can be serviced by any replica, while in others
all file access is done via the master. The master replica can be static or
elected dynamically.

A static master server is simple to implement, but is less fault-tolerant,
since the write availability is the same as the availability of the master replica.
Static primary copy methods are not very useful for read-write replication,
and will not be further discussed here.

For dynamic election of the master replica there are several algorithms,
usually based on some kind of voting. The algorithm must choose a server
which is up to date, and there must be a way to distinguish the case when the
master replica is down from when the master replica is in another partition.
If the master replica is down a new master must be elected, but if it is
in another partition it is possible that the other partition is operating, in
which case the present partition must discontinue operation. This is often
determined by having the master replica check regularly that it has contact
with a majority of the nodes, and to yield if it has not. Thus any partition
which finds that is has a majority of the nodes but no master replica can
elect a new master.

The major benefit of primary copy algorithms is easily guaranteed seman-
tics. Since all updates are sent to the master replica they are automatically
serialized. Mutually exclusive write access is as trivial to implement as in
a single-copy system. One-copy serializability is automatically guaranteed,
since all writes are done to the same replica. The only time when serial-
izability might suffer is when a new master is elected. This is mended by
ensuring that the new master is up to date.

The major drawback with primary copy is that load balancing cannot
be achieved for individual files, since all write accesses to a certain file or
volume must go through the master replica. Some primary copy systems
allow reads from any copy, while others demand that both reads and writes
are directed to the master replica.

Since the primary copy method is quite well known and easy to under-
stand it will not be described here at length. Instead there are some examples
of file systems using primary copy algorithm in appendix D.

7.5 Voting Algorithms

Voting algorithms are based on the requirement that a certain numer of
nodes must be contacted to allow a read or write operation. Most voting



30

algorithms use quorum consensus in a simple or more complex form. The
simplest voting algorithms allow operation as long as a majority of the nodes
are up and available. More complex protocols allow almost all nodes to go
down or be partitioned while providing some degree of service in some part
of the network and guaranteeing one-copy serializability. Voting is mostly
used in pessimistic systems.

Voting can be used “as it is”, so that there is no primary copy for a
file, which means that a client can access a file from any replica. Usually
the client accesses the “best” server, choosing the server according to some
criteria like load or proximity. Often a “favourite” server is chosen for each
session. A form of voting can also be used in a primary copy system to elect
the primary copy.

7.5.1 Quorum Consensus

The principle for quorum consensus protocols is that a read quorum and
a write quorum must be contacted to perform a read operation or a write
operation respectively. Every read quorum (Q,) and write quorum (Q)
must intersect, as must every pair of write quora.

In the simplest case it is sufficient if, in a system with N nodes, the
following is true:

Qr+Quw>N

2% Qy >N

Updates can be done when at least (), votes are present. The update
is done atomically to all present nodes, so that either all nodes in the write
quorum are updated or none are. A read can be done by contacting @,
nodes and reading from the replica with the highest version number. If
these requirements are met it can be guaranteed that there is at least one
up to date replica in a read quorum and that the data is read from the up
to date replica.

The simplest case of quorum consensus is called majority consensus vot-
ing. There the read quorum and write quorum are set to N/2 + 1, which
means that a majority of the nodes must be contacted to perform an opera-
tion. The client can either be coordinator itself or it can choose a node as a
coordinator. If nodes are used as coordinators the client can choose any node
as a coordinator. Majority consensus voting with a node as a coordinator is
illustrated in figure 7.2. Notice the difference between this and the primary
copy protocol in figure 7.1. Majority consensus voting works best as long as
there are only a few replicas.

In the case when @), = 1 and @,, = N the protocol is called read-
one/write-all, which means that a file can be read from any node and updates
must be written to all nodes before operation can proceed. This is often used
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Figure 7.1. Use of a primary copy for writing. All clients send updates to
the same node, which then distributes the updates to (a majority of) the
other nodes.
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Figure 7.2. Majority consensus voting with nodes as coordinators. Clients
can choose any node as coordinator. The coordinator distributes the updates
to (a majority of) the other nodes.




32

in systems where reads are frequent and writes rare. It is not recommended
for systems where writes and network failures are frequent, since it does not
allow writes if some nodes are unavailable.

The available copy protocol is similar to read-one/write-all. The differ-
ence is that writes are sent only to available nodes, and thus allows nodes
to go down. The original (pessimistic) available copy protocol is designed
for systems where nodes can crash but the network is stable. Crashed nodes
will miss some updates but can get updated when they recover. Network
partitions could lead to inconsistencies in the file system, since conflicting
updates could be done in separate partitions. Optimistic available copy pro-
tocols (see section 7.3) allow writes even if the network is partitioned and
can deal with inconsistencies. The available copy protocol is illustrated in
figure 7.3.

7.5.2 Weighted Voting

Weighted voting is an extension of the quorum consensus protocol. Each
server which holds a copy of a replicated object can have several votes in-
stead of only one, as in “simple” quorum consensus protocols. Thus more
important servers can be assigned a higher weight by giving it many votes.
Servers which are likely to go down or get disconnected can be assigned fewer
votes, so that their absence will affect less. Thus weighted voting is more
flexible than simple quorum consensus or voting and increases availability
by allowing some nodes to go down more frequently.

In other aspects weighted voting differs very little from normal quorum
consensus. Read and write quora are needed for read and write operations,
and the read and write quora must overlap. Quora are counted as numbers of
votes instead of numbers of nodes, which doesn’t affect the quorum protocol
notably.

.
> < I Partitioned

Figure 7.3. The optimistic available copy protocol. The client sends up-
dates to all available nodes.
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7.5.3 Witnesses

To improve availability witnesses can be added to the set of replicating nodes.
Witnesses store only update information, like a version vector and update
logs. They do not store the data itself. Witnesses are allowed to participate
in voting and can sometimes be promoted to “normal” nodes when a “normal”
node becomes unavailable, which means that they start storing the replicated
data.

Witnesses increase availability by increasing the number of nodes without
requiring more storage. In some cases they can even use volatile memory for
storing the update logs and versions, which makes them much faster. A basic
group of nodes could for example consist of two ordinary replicas and one
witness. There is normally no point in having more witnesses than ordinary
replicas, since a write quorum always should include at least one ordinary
node. Also there is no point in having witnesses if the protocol requires that
all nodes participate in either reading or writing. Witnesses can be used for
most voting protocols where less than all nodes are required to participate
in read and write operations.

An example of a system with volatile witnesses is described in section B.3
in appendix B.

7.6 Advanced Voting Protocols

There are many replication protocols designed for databases and other dis-
tributed systems with a larger number of nodes. There are variations of the
common voting protocols, like the dynamic voting protocol, and protocols
where the read and write quora are designed in such a way that for example
the write quorum doesn’t have to contain a majority of the nodes. Most of
these protocols give better availability of the number of nodes is large and
crashes are frequent. They are of little use in a file system like Arla where the
number of replicas is going to be small. Some advanced protocols, including
the dynamic voting protocol, are described in appendix B but will not be
further discussed here.

7.7 Two-Phase Commit

The two-phase commit protocol is used for atomic transactions from one
node (coordinator) to several other nodes (participants). An atomic commit
satisfies the following conditions:

- All nodes must agree to commit or none will commit
- Either all nodes commit or none commit

- Once a node has voted it cannot reverse its decision
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- If all nodes agree to commit and there are no failures, the transaction
is committed

- If all nodes can agree to commit they will eventually agree to commit
if all failures are repaired.

This means that if no failures occur and all nodes can commit, all nodes
will commit. As soon as any node decides that it cannot commit the trans-
action will not be committed. Also when a transaction has committed its
effects will be permanent.

The first phase of the two-phase commit protocol is called precommit.
The coordinator sends out a precommit message, telling the participants
what it wants to be done, for example an update to a file. The coordinator
also logs the precommit on stable storage. The participants log the pre-
commit to stable storage and decide whether or not they can commit. The
participants write their votes to the log and send them to the coordinator.
The coordinator waits for a certain amount of time for replies to come in.

The second phase is the commit phase. If the coordinator has received a
positive reply from all participants it writes this to the log and sends out a
commit message to all participants. When a participant receives a commit
message it commits the precommitted transaction previously written to the
log. If the coordinator receives a negative reply or doesn’t receive enough
replies before it times out it logs an abort and sends abort messages to all
participants. When a participant receives an abort message it notes this in
the log.

The coordinator has no way of knowing if a participant goes down be-
fore it gets the commit or abort message in the second phase. Instead the
participant will notice this when it recovers, because it has a precommitted
transaction in the log but no information about the outcome. The recover-
ing participant must then contact the other nodes to find out whether the
transaction was committed or aborted.

If a participant crashes before it has cast its vote it can at recovery time
assume that the transaction was aborted, since it hasn’t voted and all nodes
must vote yes to commit the transaction. Also if it has precommitted a
negative vote it knows that the transaction hasn’t committed.

7.8 View Consistency

In some replicated systems there is a risk that the user accesses old data,
since some nodes might have missed an update. Especially this is the case in
optimistically replicated systems, but is also a problem in some pessimistic
protocols. In the worst case the user gets data older than they have previ-
ously accessed due to unfortunate network or server failures.
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View consistency guarantees that you only access the same version or
later of data you have previously accessed. The view is personal for each
user. Different users can access different versions of the data and in an
optimistic system even make conflicting updates, depending on their views.

View consistency can be implemented in the client by letting the client
remember which versions of the files that have previously been accessed.
The client can deny access to a file if the versions on the available servers
are lower than the last accessed version.

The problem can also be avoided by using a majority consensus protocol
and denying access to a file if a majority of the nodes cannot be contacted.

An example of an implementation of view consistency guarantees is de-
scribed in appendix B.

7.9 Update Propagation

Update propagation in replicated systems can be done in several ways. The
most common method is to immediately spread the update to all available
replicas or to all replicas in the write quorum. This gives, of course, next
to instant availability to all updates at the other nodes. The update can
be sent synchronously or asynchronously, which give different guarantees for
update availability and write performance.

The most common alternative update propagation method is epidemic
propagation. Epidemic algorithms let each node spread an update to a ran-
dom node at certain intervals until they can assume that the update has been
spread enough. Since this gives slower updates than instant distribution and
thus can jeopardize the semantics and correctness of most replication proto-
cols they will be described here only briefly.

7.9.1 Synchronous Updates

Updates can be sent synchronously to all alive nodes or to the members
of a write quorum. The client itself can send updates to the nodes, but
then it must know which replicas there are. With synchronous updates the
client doesn’t return from the update call before enough nodes have stored
the update. This gives some form of voting protocol where the client is the
coordinator. The client can also send the update to only one node that
returns the call when it has sent the update to enough of the other nodes as
illustrated in figure 7.4. This is in practice a primary copy protocol.

The positive side of a synchronous update protocol is that it guarantees
that the write has reached out to other users as soon as it returns. A draw-
back is that it will cause delays if too many nodes fail. Also it either causes a
lot of traffic at once during the update or requires a good multicast protocol.
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7.9.2 Asynchronous Updates

An asynchronous update is usually done via a primary node. The client
sends the update to the node, and the operation returns as soon as the node
has recorded the update in permanent storage as seen in figure 7.5. Then
the primary node sends out the update to the other nodes asynchronously.
Primary copy protocols often work like this. If the choice of the primary
node is up to the client, either the node must acquire mutual exclusion for
the file before propagating the update or the protocol will be optimistic.

The asynchronous update can also be done by the client, by sending
updates to all nodes that it knows of. This is an optimistic protocol, since
the client does not care if enough nodes receive the update. It only needs to
see that some nodes have received it, and then rely on other mechanisms to
send the update around and solve conflicts. For this some sort of epidemic
algorithm (described below) can be used.

Asynchronous updates have the advantage that writes take less time to
execute for the client. They allow the network load to be spread out more.
At the same time total ordering can suffer, except in primary copy systems.
In the extreme case one-copy serializability will suffer, since the protocol
becomes optimistic.

7.9.3 Epidemic Update Propagation

Epidemic algorithms rely on mathematical models which guarantee that all
nodes will eventually get the update. Two common epidemic algorithms are
anti-entropy and rumor mongering, and are described in [7].

Both algorithms are based on some common principles. When a node
receives an update it is considered infective, a node which hasn’t yet re-
ceived the update is called susceptible, and a node which has decided not to
distribute the update any more is called removed.

In simple anti-entropy all nodes are infective. At certain intervals every
node chooses another node at random and resolves any differences between
their contents by pushing and pulling updates between the nodes. This is
a quite expensive algorithm, since the whole contents or version vectors for
the contents must be compared at each interval.

Rumor spreading is a more advanced and efficient algorithm. When a
node receives an update (“hot news”) it starts spreading (“gossiping”) it to
random neighbours at certain intervals. In a while it will find that most of
the neighbours it contacts have already received the update and will stop
spreading it. Usually the nodes keep a counter for counting how many other
nodes they have tried to contact that have already got the update. When
the counter reaches a threshold value the node will stop spreading the rumor.
The threshold for stopping the rumor spreading will decide the probability
that some nodes miss an update. While it is good to stop spreading the
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update so that there will be less traffic, it is not good if some nodes miss the
update.

The threshold can also be implemented as a probability for whether to
stop spreading the update or not. This requires less storage since no counter
is needed. At the same time it is more uncertain, since it can happen that
a node stops spreading the rumor almost at once or keeps sending it for too
long. Also it can be decided that nodes which haven’t heard from other
nodes in a while will try to pull information from a random node at certain
intervals, to be sure that they haven’t missed any updates.

Deletion of an item requires that a special item type, a “death certificate”,
is spread. Otherwise the absence of an item at one node will be interpreted
as that the node hasn’t received the item yet and the item will be restored.
The death certificate circulates in the same way as normal updates. When a
node tries to “update” another node with a file that has been deleted at the
other node the other node will see that the death certificate is later than the
file and thus refuse to receive the file.



Chapter 8

Replication in Other File
Systems

Read-write replication of files has been previously implemented in several
other file systems. One of the more successful is Coda, developed at Carnegie-
Mellon University and partly based on the same concept as AFS. Some other
attempts never came further than primary testing due to lack of interest and
funding or because the platform it was developed for became obsolete. It
is in the replicating file systems where the most complete solutions often
can be found, even though the solutions aren’t directly adaptable to Arla.
The implementations show what protocols have previously been considered
worthwhile, and which of them really worked. In this section some of these
existing implementations of read-write replication will be discussed and com-
pared. More detailed descriptions of each file system separately can be found
in appendix D.

8.1 Optimistic Replication

Optimistic replication has been implemented successfully in Coda ([27], [25],
[5]) and Ficus ([17], [22]). They are similar in some aspects but have many
differences. Both use an optimistic available copy protocol to initially spread
the updates, but in Coda the updates are sent to the available nodes by the
client while in Ficus the client chooses a favourite server that distributes
the updates to the other nodes. Conflicts are guaranteed to be detected.
In Ficus the nodes contact each other for resolution periodically, while the
nodes in Coda keep track of each other and do resolution when a node
regains contact with a node it previously lost contact with. Both systems
use automatic resolvers when possible and contact the users when automatic
resolution cannot be done.

Ficus and Coda have both been developed a long time. The recovery
protocols are complicated and seem to have required a lot of work. Mea-
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surements described in the papers show that both systems have good per-
formance.

8.2 Primary Copy Protocols

Two file systems using a pessimistic primary copy scheme are Echo (|14], [4]
and Harp ([13]). There are several minor differences between Echo and Harp,
but the replication scheme is roughly the same. Both use a primary copy
scheme with a primary node, a set of secondary nodes and some witnesses.
The primary sends updates to the secondaries with a two-phase commit
protocol. The secondaries commit the logged changes to disk asynchronously.
The primary copy handles both reads and writes.

The primary node checks its contact with the secondaries periodically.
When the number of alive secondaries changes an election is held. Election
will also be initiated by a secondary node if it doesn’t hear from the primary
for a period of time. The initiator of the election (the coordinator) sends out
an election message to the other nodes. A node receiving an election message
gives a positive vote to the coordinator if the coordinator has higher priority
than the node itself and if the coordinator has the same or later versions of
the replicated files. The versions of the files are kept track of in a similar
way in both Echo and Harp. In Echo an epoch variable is used to keep track
of the current election period. In Harp this is called a view. The nodes
keep track of which epoch or view they were last updated in. A node that
can collect positive votes from the majority of the other nodes and gets no
negative votes becomes the new primary and announces this by announcing
a new epoch or view.

In both systems it seems like the most complicated part of the protocol
is to keep track of the epochs and views respectively. Recovery from crashes
becomes slower due to the election, and during election the replicated data
will become unavailable for a short period of time. The performance of Echo
was not measured in any of the above mentioned papers, and the develop-
ment was stopped in 1993. Measurements for Harp are difficult to interpret,
since Harp stores the logs in volatile memory (each server is connected to
an UPS to protect it from memory loss), which makes updates faster than if
the changes had to be synchronously stored to disk.

8.3 Replication with Tokens

Tokens are often used for mutually exclusive writes. For example in Echo
read and write tokens are given out to the clients by the primary server.
Deceit (|28]) and Huygens (|8]) use tokens to determine which node can
write to a file at a given moment. In Deceit the tokens are administrated by
token holders, while Huygens uses a virtual token ring to pass the tokens.
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Deceit uses replication on demand, which means that a new replica is
created at a node when a client tries to access the file at that node. A
minimum replica level is upheld for each file, but the number of replicas
can increase. The node holding the token is responsible for keeping up the
number of replicas. If a node goes down a new replica is placed on another
node. The token is passed between nodes whenever a node wants to write
to the file. Before actually writing the token holder needs to send out a
notification that the file is unstable and get a response from a certain number
of other nodes.

Since the number of replicas in Deceit is variable it is possible to have
two network partitions that have enough nodes to continue operation. This
means that inconsistencies can occur. Inconsistencies will be detected when
the nodes get connected again. Two versions of the file will be kept and the
user will have to resolve the inconsistency.

In Huygens the nodes are ordered into a virtual ring. The token is sent
around in a token-ring fashion. Also a keep-alive message is sent around to
detect breaches in the ring. When the ring breaks a new ring will be formed
without the missing nodes. Depending on the number of missing nodes the
new ring can continue either full service, read-only service or no service.

Tokens can be used to guarantee mutual exclusion, but mutual exclusion
is not always necessary. In many file systems it is sufficient that the updates
are totally ordered, as they will be if a two-phase commit protocol is used.

8.4 Epidemic Update Propagation

Epidemic update propagation is an interesting concept, though perhaps not
so useful for Arla. Ficus uses a kind of epidemic propagation of updates
after the first update of available copies. Bayou ([21]) uses epidemic update
propagation to spread all updates. The update protocol is based on one-
way reconciliation, where the receiver sends its version vector to the sender
and the sender sends all more recent updates to the receiver. Each node
chooses periodically one or several other nodes to reconciliate with. Thus
the updates are eventually spread to all nodes.

8.5 Other Solutions

There are a number of other replicating file systems. Many claim that they
have replication, but most have only read-only replication. Some, like Frolic
(|23]) are high-level solutions for wide-area networks. There are also hard-
ware based solutions and hardware aid for stability. Harp requires that all
file servers are connected to an UPS to ensure that the volatile logs aren’t
lost if the power fails. Many file systems use RAID to get reliable disks. In
HA-NFS (2] two servers are connected to the same set of SCSI disks. If one
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server crashes the other will take over its IP address and disks. Solutions
like these can be interesting to look at, but since they often are old and built
for specific hardware or software they are not worth much more attention in
this work.



Chapter 9

Replication in Arla

9.1 The Choice of a Replication Protocol

Many replication protocols have been described earlier in this study. Most of
them are not possible to implement in Arla. In this chapter the possibilities
and limitations will be described and discussed. First there will be some
discussion about the limitations, requirements and other factors that affect
the choice. Due to these factors many protocols can be ruled out. When the
limits are clear the remaining possibilities will be described.

The protocols that actually will be considered here are pessimistic pri-
mary copy, pessimistic majority consensus, pessimistic read one/write all
and optimistic available copy. All of them have been previously described
in chapter 7. Pseudo-code for some of the algorithms can be found in ap-
pendix A.

The pessimistic algorithms can be varied in several ways. The most
important choices affecting the protocols are asynchronous or synchronous
updates and the design of the recovery protocol. These will also be discussed
in this chapter. Finally the concept of witnesses will be discussed.

9.2 Limits and Requirements

There are certain limitations and requirements in the choice of a read-write
replication scheme for Arla. To find out what the system administrators
would like I interviewed some AFS administrators via e-mail. I have also
talked to some of the Arla implementors to hear their opinions.

The greatest limitation lies in the compatibility with AFS. The Milko
server implementation must be compatible with the AFS client, which im-
mediately rules out some approaches to replication. The client expects to
send all write requests to one file server, which is usually pointed out to it
by a Volume Location Server. Thus the replication must be handled by the
servers without help from the clients.

43
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It seems fairly clear from the interviews that the file system should be
kept consistent. An optimistic scheme will be discussed, but the main focus
will be on pessimistic replication.

It also seems clear from the interviews and discussions that the main
reason for replication of read-write data would be to increase availability
during server, disk or network failures. Also most AFS cells have quite few
file servers, so it can be assumed that read-write data would be replicated to
only a minimum number of nodes. There is simply no point in having more
replicas than two or three, and more replicas would take up more disk space.
Thus the replication algorithm should be optimal for two or three replicas.
Scalability is still important, but the emphasis should be on small numbers
of nodes.

Extra network load should be kept as low as possible. Network load is
one of the major drawbacks of most of the replication schemes available. It is
inevitable that the load increases, but some choices can be made so that the
load increase is minimised. Instead, the file servers often have CPU cycles to
spare, so if there is a trade-off between network and CPU load the network
should be spared.

9.3 Which Parts are Affected?

The main participants in the replication scheme will, of course, be the file
servers. Also the volume location servers will have to be aware of it. The
natural unit of replication is a volume, since it is the administrative unit
in AFS. As stated earlier the client should not need to be aware of the
replication. It is possible to give the Arla client extra features which increase
the performance compared to the AFS client, but the AFS client should not
get lower performance than usual.

In AFS the file servers are not aware of the other file servers. In a
replicated Arla system the file servers need to be aware of each other when
distributing updates etc. The alternative would be to let the volume server
handle the distribution, which would load the volume server unnecessarily
much.

9.4 The AFS and Arla Clients and Replication

The AFS client is aware of read-only replication. When it requests volume
location information for a read-only replicated volume it gets a set of file
servers as a reply. It will then choose a suitable file server to read from. If
the chosen file server goes down it will choose another.

The client caches volume location information and can access the volume
without consulting the volume location server. It is also possible to manually
access a volume on a file server if you know which file server it is located
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on. There needs to be a way of redirecting or delaying a call from a client
if it tries to access a file server that isn’t currently in service for one reason
or another. There is also a need for a way to choose another server if one is
completely unreachable.

There are some mechanisms which can be used to redirect access requests.
The client can be told by the volume location server that there are several
replicas of a volume. The AFS client could get confused if a read-write
volume is said to be replicated, but the Arla client could easily be modified
to accept this. This allows the client to choose another file server if one goes
down. Thus the AFS client will not get lower availability than if the volume
was non-replicated and the Arla client will get better availability.

If a file server finds that it isn’t allowed to serve a request from a client
because it has lost contact with too many other file servers it can “lie” to
the client and say that the volume has moved to one of the unreachable file
servers. The client will try to access the other file server and will (probably)
find that it cannot be reached. At this point an AFS client will simply wait
for the other server to come up. If the client is an Arla client it might know
that there are even more replicas and will try to contact them all one at a
time, but all replicas it can reach will tell it that the volume has moved to
an unreachable file server. This can be optimized by letting the file server
know that the client is an Arla client so that the server can tell the client
that the volume cannot be reached right now.

Another solution is to let the client wait until the file server regains
contact with enough other servers to serve the request. The volume could
even be marked “busy” until it can be written to again.

9.5 The Effect of Caching

The client in Arla and AFS caches file data on the client machine’s local
disk. Writes are not committed to the server immediately. Instead several
writes to a file are committed together in a flush operation periodically, when
the file is closed or with a fsync() system call. Thus the cache can be more
updated than the server, and a user reading another cached copy of a file
might read a stale version. It is even possible for two users to update a
file simultaneously without noticing it until either of them is flushed to the
server. While both changes still are in the caches the system could even be
called inconsistent.

This gives a certain amount of uncertainty. You know that you’ll be
notified by broken callbacks (see section 4.2.11) if the file is changed on the
disk, but you cannot be sure that changes reach the disk immediately. Since
this is well known, users do not expect anything but problems if, for example,
two users edit the same file at the same time. Files requiring changes to be
valid immediately, like databases that can be accessed by several users at
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the same time, aren’t even kept in AFS. When mutual exclusion is needed
locking is used. Locking can also be implemented for a replicated system if
a pessimistic replication protocol is used.

This “relaxed” view on update propagation can be seen as an advantage
when designing a replication protocol. The programmers and the users know
that simultaneous changes in a file can give unpredictable results and thus
avoid it. Thus the replication protocol can also be allowed a slightly relaxed
update propagation. For example asynchronous updates could be allowed
to some extent. Whether this is useful or not depends on the replication
protocol, but it is still worth notice.

9.6 Consistency Models and Availability

There is always a trade-off between consistency and availability. Should
servers be allowed to continue service if they have lost contact with the other
servers? If all alive servers are allowed to write to all files they replicate the
file system might become inconsistent and if all servers are allowed to read
the files they replicate some might give out stale data. On the other hand,
if only one partition of servers which have lost contact are allowed to serve
requests the accessibility will suffer. The choice lies between optimistic and
pessimistic protocols, and between different pessimistic protocols.

A pessimistic quorum consensus algorithm can be used to maintain the
consistency. There are two reasonable quorum settings for this case: majority
quorum and read one/write all. Majority quorum requires that a majority
of the replicas is reachable for both read and write requests. This lets only
one partition operate in a partitioned network. Read one/write all requires
that all replicas are available when a write request is served, but lets read
requests be served as long as any replica is reachable. This gives higher read
availability but lower write availability in the presence of network partitions
or crashes.

A pessimistic primary copy algorithm keeps the updates ordered and
maintains consistency with ease. Problems can only arise when a new pri-
mary copy is to be elected.

The optimistic approach is to allow reads and writes to any replica. There
is a risk that inconsistencies occur, since the same file can be updated in dif-
ferent network partitions, but it will always be possible to update a file as
long as there is a replica available. The problem is how to handle inconsis-
tencies. All inconsistencies need to be reliably detected and resolved. The
detection must be automatic, but resolution can be done manually. Often
manual resolution is in fact the only possibility.
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9.7 Pessimistic Replication with a Primary Copy

In a primary copy system all reads and writes are directed to a primary copy
that distributes the updates to the secondary nodes. The system can easily
be kept consistent and writes are automatically ordered in the order they
arrive at the primary copy. The protocol will not help with load balancing
but will increase stability and availability since the data is “backed up” on
the secondary servers. If the primary server goes down a secondary can fairly
quickly be elected as primary and start service.

The major design issue in the primary copy protocol is the election of a
new primary node. A suitable algorithm could be the bully election algo-
rithm. Election is to be held when the number of active nodes changes. The
nodes are ordered hierarchally and will vote only for a node with higher pri-
ority than itself. If a node gets an election message from a node with lower
priority than itself it will also start an election. A node that has started
election and receives an election message from a node with higher priority
will abort its own election. Thus the active node with the highest priority
will get the most votes and win the election.

The primary node sends messages periodically to the secondary nodes to
check that they still are alive. If it fails to get a reply from a secondary, or
gets a reply from a node that was previously down it will start election. A
secondary node that doesn’t get a check message from the primary after the
appointed interval also starts election. Thus the primary knows that after
a check it is the primary for at least the time until the next check and can
thus serve reads during this time without consulting the secondaries.

The new primary node has to be up to date, which means that there
needs to be a way of telling whether a node is up to date. Many systems
keep an incremental view number for each election period and to let the
nodes remember which view they were last updated in.

The distribution of updates from the primary to the secondaries is done
with two-phase commit. Writes could be allowed as long as the primary gets
a positive answer from a majority of the nodes, but even better is to require
that all nodes that participated in the latest election send positive replies,
similarly as described in section 9.9.1. If the primary doesn’t get positive
replies from all nodes that were previously available it starts a new election.
This guarantees that the view number changes as soon as the number of
active nodes changes. Thus it is assured that a node that is last updated in
a specific view has all precommits sent in that view. If the node has missed a
precommit an election has been held by the coordinator and a new view has
been started, since the node naturally didn’t send a reply to the precommit
it missed.

The election itself is fairly simple. A node that starts election (the co-
ordinator) for one of the reasons above sends out an election message to all
other nodes stating its priority number and which view it was last changed
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in. A node that receives an election message compares the coordinators pri-
ority and view number with its own priority and current view. If it finds
that the coordinator has higher priority and the same or higher view number
it sends it a yes vote. Otherwise the node starts an election itself. The coor-
dinator waits a certain time for votes and if it receives votes from a majority
of the nodes (including itself) it becomes the primary. The new primary
announces itself by sending out the new view number to the other nodes
with a two-phase commit.

Whenever a primary node receives an election message that it votes for it
will stop service. It will also stop service if it starts an election itself. Service
is restarted only when the new primary (or re-elected old primary) is elected
and has sent out the new view number to the secondary nodes.

A recovering node should first try to get itself updated according to the
procedure described in 9.11.1. Thereafter it starts election to see if it is
entitled to be the primary node. It is possible that it gets election messages
from other nodes during the recovery phase, and in that case it will vote
according to its view number and priority.

Witnesses can be used as discussed in 9.13. The minimum group of
replicating nodes consists of one primary, one secondary and one witness.

Directing reads and writes to the primary copy can be done either on the
volume location level or on file server level. It would probably be easiest to
let the secondary nodes redirect the clients to the current primary node.

9.8 Pessimistic Replication with Majority Consen-
sus

Majority consensus voting means that a majority of the nodes must partici-
pate in all read and write operations. This guarantees consistency, since at
least a majority of the nodes will be up to date. A two-phase commit proto-
col is used for reads and writes to ensure that all nodes get the updates in
the same order. If a node misses an update completely it will have to detect
that and do a recovery from a node that is up to date. Version numbers
can be used for detection of missed updates. If a node is asked to write a
later version than the next one according to its own version numbers it can
assume that it has lost an update.

The design of the recovery operation influences the read and write opera-
tion, as will be seen later on. The following descriptions of the read and write
operations in the majority consensus voting and read one/write all schemes
are suitable for both eager and lazy recovery (see section 9.11), though they
could be simplified if eager recovery is used. When using lazy recovery a
node that isn’t fully recovered, i.e. has unresolved precommits in its log or
has an older version of the file than the new version minus one, considers
itself busy until it is fully recovered. A busy node will refuse read and write
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calls until it is free.

9.8.1 The Write Operation

When data is flushed from the cache the client sends the data to a file server.
This file server acts as the coordinator in the following procedure:

e The coordinator sends out a precommit write request to the other
nodes, containing the data that is to be written.

e The other nodes record the precommit in a log and send a reply to the
coordinator if they can commit. A node that cannot commit because
it is busy can either answer that it is busy or delay its answer until it
can commit. A node that cannot commit for a more permanent reason,
like a full or broken disk, sends a negative answer stating the reason
for failure.

e The coordinator waits for answers from the other nodes. When it has
received positive replies from a majority of the nodes it commits the
data to disk and sends out a commit message to the other nodes, which
then commit the data.

e The coordinator will time out if it doesn’t receive replies from enough
nodes. It will detect if the nodes which didn’t answer are busy or down.
If a majority of the nodes are unreachable the write fails and the client
is told that the volume is unreachable.

e If a majority of the nodes send negative replies the write fails and the
client is given an error message.

e Whenever a write fails the coordinator logs and sends out cancel mes-
sages to the other nodes so that they know that the commit was can-
celled.

e If a majority of the nodes can be reached but are busy the volume will
be considered busy. The coordinator delays the commit until the write
can be either committed or cancelled, depending on the replies it gets
when the busy volumes become active.

9.8.2 The Read Operation

At a cache miss the client will ask for data from a chosen file server. This
file server acts as the coordinator in the following procedure:

e The coordinator sends out a request to the other nodes asking them
for the version numbers for the requested file and volume.
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e The other nodes send replies to the coordinator.

e When the coordinator has received replies from more than a half of the
nodes it compares the version numbers. The node which has the high-
est version number (including itself) is guaranteed to have an updated
copy of the file, since there is at least one node that is up to date in
every majority group of nodes.

e If the coordinator isn’t up to date it asks for the file from the node
which has the highest version number for the file.

e The coordinator sends the data to the client.

9.9 Pessimistic Replication with Read One/Write
All

Pessimistic replication with read one/write all is similar to the current read-
only replication scheme in AFS. For a write operation all nodes are required
while a read operation can be served by any node. Consistency is guaranteed
by requiring that all nodes have identical replicas at all times. The difference
between read-only replication and read-write replication with read one/write
all is that the vos release operation which updates the read-only replicas
in AFS must be done by an administrator while read-write replication can be
done automatically. Also the update procedure can be made faster compared
to the vos release procedure.

The write operation is done with a two-phase commit protocol. Error
detection and recovery is simpler in the read one/write all protocol than
in the majority consensus protocol, since all nodes should have the same
versions of the files. From the user’s point of view, read one/write all works
best with synchronous updates. The drawback to that is that all nodes must
answer before a write can be committed.

9.9.1 The Write Operation

When data is flushed to disk the client sends the data to a file server. This
file server acts as the coordinator in the following procedure:

e The coordinator sends out a precommit write request to the other
nodes, containing the data that is to be written.

e The other nodes record the precommit in a log and send a reply to the
coordinator if they can commit. Nodes that cannot commit because
of full or broken disks or other reasons of failure send negative replies
stating the reason of failure.
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e The coordinator waits for the answers from the other nodes. If it
receives positive replies from all nodes it commits the data to disk and
sends out a commit message to the other nodes, which then commit
the data.

e If the coordinator receives any negative replies the commit fails and
the client is notified of the reason.

e Nodes that are busy or down will be detected by the coordinator. A
node which cannot be contacted before timeout is considered down.
This will cause the write to fail with the reason that a node is un-
reachable.

e Whenever a write fails the coordinator logs and sends out cancel mes-
sages to the other nodes so that they know that the commit was can-
celled.

e If a node is busy the volume is considered busy. The coordinator waits
with the commit until the write can be either committed or cancelled,
depending on the reply from the busy volume.

9.9.2 The Read Operation

The read operation works just like a read operation on a read-only replicated
volume. At a cache miss the client asks for the data from a chosen file server
and the file server sends the data to the client. Since all active nodes have
the same version of the data it is guaranteed that the data read is up to
date.

9.10 Optimistic Replication

The best availability can be achieved with optimistic replication. Optimistic
replication means that a file can be written to as long as there is at least
one available server holding a replica. The simplest optimistic protocol is
the optimistic available copy protocol. Updates are simply sent to all avail-
able nodes. When nodes regain contact or recover from crash they have to
reconciliate their contents with the other nodes. Implementation of a good
optimistic protocol is complicated, so I will only briefly discuss the main
issues from the Arla point of view.

The write operation needs to update several nodes which may have differ-
ent versions of the same file. If the system is inconsistent the inconsistencies
must be resolved before the write can proceed.

The read operation must get the latest possible version of the file. Prefer-
ably it should also see to it that a client never reads an older version than
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it has previously read for a certain user. Otherwise the user might suddenly
get an older version of a file than previously.

The reconciliation process consists of two parts: detecting inconsistencies
and resolving them. There must also be a strategy for reconciliating a node
with a group of nodes, since it is not guaranteed that all nodes in the group
has the same versions.

The detection of inconsistencies in Arla would require comparison of data
rather than version numbers, since the version number is a plain integer that
only tells how many times the file has been updated. Two replicas could have
been updated equally many times but still have different contents. Compar-
ison of data can be done in several ways. All updates can be logged and
the update logs can be compared, or the files themselves can be compared.
Another option is to let all nodes keep track of each other and log their
states whenever they lose contact with another node. These are all quite
complicated operations.

The resolution process is no less complicated. Many optimistic file sys-
tems use automatic resolution as much as possible. For directory data auto-
matic resolution is feasible, but for most user files only manual resolution is
possible. A way to administer this is to keep several versions of the conflict-
ing files until the user has resolved the conflicts.

A good optimistic replication protocol is complicated. It will also re-
quire manual conflict resolution, something which most system administra-
tors would like to avoid.

9.11 Recovery in Pessimistic Replication

When a node recovers from a crash or a link failure it must somehow get
updated. This can be done either before the server is allowed to participate
in voting (what I call eager recovery) or whenever it needs the latest replica
(what I call lazy recovery). Eager recovery would guarantee that all replicas
in contact with each other have the same version while making the recovery
of the server slower. Lazy recovery means that the server is allowed to
participate in voting as soon as it gets up or regains contact but that it can
have an older version of a file and will be required to update the file at a
later time.

Recovery is mostly needed for majority consensus protocols, but also the
read one/write all protocol will need some amount of recovery, since a node
might have missed a commit if it went down after agreeing to a precommit
but before the precommit was resolved.

A node isn’t fully recovered as long as it has an older version of a file than
any of the nodes it can reach or if it has missed commit or cancel messages.
A node is up to date when it has the latest version of all files in all volumes
it replicates.
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Recovery is best done one volume at a time until all volumes are recov-
ered.

9.11.1 Eager Recovery

Eager recovery keeps all active nodes recovered by requiring that a node
gets all updates for a volume before it starts participating in voting for that
volume after a crash or failure. During the recovery process the node is
considered busy regarding the particular volume, which could mean that the
node remains busy a long time if it cannot contact a node that has newer
information.

The first step in the recovery is to determine whether the node has missed
any commits. Since the commit-log is kept in permanent storage it can
compare its latest log-entry to the other nodes’ log-entries.

The recovering node sends its latest log-entry to an active and fully up-
dated node. Since eager replication guarantees that all active nodes which
have contact with each other have the same versions it can choose any active
node. The active node finds the position in its commit-log and sends all
newer log-entries to the recovering node.

Since the commit-log contains all information needed for updating the
volume the recovering node can simply go through the newly received entries
in the commit-log to update the volume.

While the recovering node waits for the log entries it can receive new pre-
commit, commit and cancel messages. These must be stored in a temporary
log until the previous entries have been received. When all previous entries
are received the new entries can be added to the top of the log.

If eager recovery is used the read operation becomes a bit simpler in the
majority consensus protocol. Since the node knows that it has the same
version of all files as all other nodes it can reach it only needs to determine
whether it can get an answer from a majority of the nodes without having
to compare versions.

The commit-log will eventually take up a lot of space. Thus it needs to
be truncated, throwing away the oldest entries. The simplest way to do this
is to allow truncating at will, for example when the log reaches a certain
size. This could lead to that the newest entry of a node that has been out
of reach for a long time is too old to be found in an active node’s log. In
this case the whole file or volume will be sent to the recovering node, which
can then throw away its old commit log, starting a new one from the state
of the copied file.

9.11.2 Lazy Recovery

Fast recovery of servers is often asked for. With eager recovery of the repli-
cated volumes it will take some time before the server is fully functional.
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Lazy recovery can improve the recovery time, but the cost must be paid
later. Instead of updating all volumes at once they are updated when they
are next written or if the server is chosen to be a coordinator for a read or a
write. This makes the read and write operations slower if a server isn’t fully
recovered.

The recovery of a volume can, when it is done, be done similarly to eager
recovery, with the exception that the recovering node first has to find a fully
recovered node. With the majority consensus protocol it needs to contact
a majority of the nodes and recover from the node that had the highest
version number, similarly to a read operation. With read one/write all the
recovering node has to find nodes which know the results of all pending
precommits that have been committed or cancelled. A good idea is to start
by trying to contact the coordinator for the precommit.

When a node is chosen by a client to act as a coordinator it needs to be
recovered. At a write operation the coordinator must recover before it starts
the two-phase commit sequence, since it should have the latest version of
a file before it starts sending updates to the file to other nodes. During a
read operation in the majority consistency protocol the coordinator can do
a recovery from the node it finds has the latest version of the file. When the
read one/write all protocol is used the node chosen for reading must try to
resolve all unresolved precommits it has in its log.

To fulfill the consistency requirements all nodes that participate in a write
operation must do a recovery for the volume being written. This can cause a
lot of traffic during the write operation if many nodes are in need of recovery.
This can be optimised a little by letting the coordinator recover before it
starts the two-phase commit and then letting the participants recover from
the coordinator instead of having to first find an up to date node to recover
from. The participants are considered busy while doing the recovery.

As described previously the logs can be truncated, in which case the
recovery sometimes requires copying of complete files or volumes.

9.12 Asynchronous or Synchronous Updates?

In a pessimistic update protocol for a replicated system the write operation
is usually complicated and takes a considerably longer time than the corre-
sponding operation would take in a non-replicated system. The suggested
pessimistic protocols in this study use a two-phase commit protocol, which
requires timeouts. In the presence of failures the write operation can be
considerably prolonged while waiting for time out.

To avoid waiting for timeouts and slow links it is possible to do the write
operation asynchronously. For example, the write operation can return as
soon as the coordinator has initiated the two-phase commit protocol. This
would give as fast writes as in a non-replicated system, since the coordinator
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is the only node that needs to record the update to its logs before the write
operation returns.

The problem with asynchronous updates is that it cannot be guaranteed
that the write operation succeeds until the two-phase commit protocol is
completed. The user will think that the write is done since the write oper-
ation has returned, while the coordinator only has begun the real updating
process. The user might even think that all work is saved and log out before
the coordinator can report that the write failed.

Synchronous updates are safer but slower from the users point of view.
When the write operation returns the update is guaranteed to be either
succeeded or failed. The user will know the outcome at once. This can be
extra important in a read one/write all system, where the write operation
requires the participation of all nodes, which gives more points-of-failure.

Timeouts can make the update slower, but mostly in the presence of so
many failures that the update cannot succeed anyway. In those cases one
might even prefer to wait a while to be told that the write failed than to
first hear that the write was completed and a short time later that the write
actually failed.

9.13 Witnesses

A way to virtually increase the number of replicas in a pessimistic system
while using a minimum amount of disk space is to use witnesses. A witness is
a node replicating a volume without storing the data. Instead, it only stores
update logs and version numbers for the files. The witness can participate in
voting and even recovery as long as it has enough logs stored. The witness
cannot serve read or write requests by itself.

There can be any amount of witnesses, but it must be remembered that
at least one ordinary node must participate in every read or write operation.
Witnesses are often used in systems with only a few replicas to get an odd
number of replicas. A good constellation is having two ordinary nodes and
one witness.

Of the replication schemes described earlier witnesses are most useful
for primary copy and majority consensus replication. For read one/write all
they would only increase the amount of nodes that have to participate in
the write operation without increasing the amount of nodes that can be read
from.

The recovery process of a witness is simpler than the recovery of a or-
dinary node. The easiest thing to do is to discard the old logs and get the
latest version information from another witness or an ordinary node. It is
also possible to do recovery in the same way as for an ordinary node, which
means copying the update log from another node.

An ordinary node can use the witness for recovery as long as the witness
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has sufficiently old logs. If the witness is insufficient the ordinary node will
have to contact another ordinary node to do recovery.

A witness can be implemented so that it stores the logs and version
numbers in volatile memory. This would mean that it loses all information
if it crashes, but since it can discard the logs and must get new version
information anyway this won’t do any harm. The advantage of “volatile”
witnesses is that they are faster than witnesses storing logs on disk.

9.14 Summary

Considering the limitations and requirements for a replication protocol in
Arla the following options are reasonable:

e Protocols:

Primary copy (pessimistic), all reads and writes are done through
a primary node. Requires election.

Majority consensus voting (pessimistic), a majority of the nodes
participate in both reads and writes.

Read one/write all (pessimistic), write to all nodes and read from
any node.

Available copy (optimistic), write to any node. Can cause incon-
sistencies.

e Updates:

Asynchronous, fast but will cause some difficulties in the protocols.

Synchronous, slower but safer.
e Recovery (pessimistic protocols):

Eager, gives longer recovery times but keeps the nodes updated.

Lazy, givers quicker recovery but reads and writes might be delayed
by recovering nodes.



Chapter 10

Recommendations

10.1 Recommended Protocols

Based on the earlier discussion I would like to recommend pessimistic repli-
cation with synchronous updates and eager recovery. Optimistic replication
is complex and requires more maintenance than pessimistic replication. Syn-
chronous updates guarantee that errors are detected before the flush opera-
tion is ended and makes the update algorithms simpler. Lazy recovery would
make the servers quicker to recover, but will cause some slow updates when a
replica must be recovered during a write operation. Eager recovery is easier
to implement and also makes the read and write processes simpler.

The best protocol to implement is the pessimistic read one/write all
protocol. The protocol is fairly simple and easy to understand, thus easier
to implement correctly. Load balancing and higher availability is achieved
for reads than when using the primary copy protocol. Recovery of a node
is simpler and faster than for a majority consensus replicated node, since
a node can only miss commit or cancel messages. Updates cannot be done
if a node is down, thus a crashed node cannot miss any. Read one/write
all replication can be used for many volumes which are currently read-only
replicated, thus allowing ordinary users to make changes in them without
assistance from an administrator. In addition, the update procedure in read
one/write all should be faster than the vos release operation required to
update the replicas of a read-only replicated volume.

It is also possible to implement a second protocol along with the read
one/write all protocol. It can be chosen for each replicated volume which
replication protocol to use. Majority consensus or primary copy could be
useful for work directories that need increased read-write availability. For
example users could have both a small replicated volume and a larger non-
replicated volume to their disposal. In the replicated volume they can keep
important data that they want to be able to access even when there are
server or network problems. Less important data can be kept in the non-
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replicated volume. This would allow the administrator to keep the amount
of replicated data down to a minimum and thus save disk space.

The choice between majority consensus and primary copy depends mainly
on whether the period of unavailability during election can be accepted or
not. The primary copy protocol is simpler, since reads and writes are auto-
matically serialized, but also the majority consensus protocol can guarantee
serializability, even if it takes a bit more effort.

If the primary copy protocol or the majority consensus protocol is imple-
mented witnesses should also be implemented. A minimum group of nodes
replicating a volume would then consist of two ordinary servers and one wit-
ness. To read or write to a file in a certain volume two of the nodes in the
group need to be available. Thus the data in the volume can be accessed
even if one of the nodes goes down. The amount of replicating nodes can be
increased, but the number of replicas should always be odd. A majority of
the nodes should be ordinary servers.

10.2 Replication or not?

The advantages of implementing replication with the read one/write all pro-
tocol are:

e It can replace read-only replication for some volumes, making them
easier and faster to update.

e It can be useful for some volumes that are currently non-replicated,
giving them higher read availability and better load balancing.

The advantage of replication with the majority consensus protocol and
the primary copy protocol compared to a single copy is:

o It increases both read and write availability during server or network
failures.

The drawbacks of read-write replication for a volume that is currently
non-replicated are:

e Slower updates and sometimes slower reads.

e Slower recovery of the servers, especially when using the majority con-
sensus or primary copy protocol.

e Increased network load during read, write and recovery operations.

e Periods of unavailability during election if the primary copy protocol
is used.
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In addition the read one/write all protocol has the drawback that a vol-
ume cannot be updated if any of its replicas is unreachable or down.

Considering the advantages and drawbacks I would recommend imple-
mentation of at least read one/write all replication. Replication with pri-
mary copy or majority consensus can be added later, if the implementors
have sufficient time and interest.

10.3 Administrative Functions

Some administrative functions have to be slightly adjusted for replicated
volumes. Since it will be fairly obvious what needs to be done I will only
discuss this briefly and leave the details to the implementors.

The administration of a read-write replica resembles in many ways the
administration of an ordinary read-only replica. A read-write replica in Arla
can be created and deleted in the same way as a read-only replica in AFS.
It can be moved in the same way as any volume.

Backups can be done for each replica separately. All replicas don’t have
to be backed up, as long as the backup is done from an updated replica.
A destroyed replica can be recovered either from a backup or by ordinary
recovery from another replica.
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Chapter 11

Conclusions

There are many algorithms for read-write replication of files in a distributed
file system. Most of them are not suitable for Arla due to the compatibility
requirements with AFS. Since it can be assumed that the group of nodes
replicating a volume in Arla would be quite small the simplest protocols
should be good enough.

A read one/write all protocol can be implemented to partly replace the
existing read-only replication. Better write availability can be achieved with
a majority consensus voting protocol with witnesses. Both protocols can be
used simultaneously, in which case the replication protocol can be chosen
individualy for each replicated volume.

Both protocols use a two-phase commit protocol for distributing updates.
The coordinator is a node chosen by the client. Updates should be syn-
chronous.

Read-write replication with read one/write all has enough advantages
to be considered worth implementing. The majority consensus protocol has
some more drawbacks but might still be worth consideration.
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Appendix A

Pseudo-Code

Here is some pseudo-code for the coordinator and the participants in the two-
phase commit protocols used for reads and writes, for the recovery protocol
and for the election protocol. The pseudo-code is rough, mostly drawing
the outlines for what the protocols should achieve. Many details need to be
added when designing the final protocol.

A.1 Coordinator read one/write all, Write opera-
tion:

procedure getReplies():
repeat the following until either NumberOfReplies=NumberOfParticipants,
ReceivedNo=true or timeout:
receive a reply
NumberOfReplies := NumberOfReplies + 1
check the reply value:
if "yes" then NumberOfYes := NumberOfYes + 1
if "no" then ReceivedNo := true
if "busy" then add node to BusyNodes
end repeat

if a "no" is received (ReceivedNo = true) then
log "cancel"
send "cancel" to each participant
if cause of the "no" message was a version error then
recover and start over
else
return write and state cause to client
else if NumberOfYes = NumberOfParticipants then
log "commit"
send "commit" to each participant
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commit the write
return write successfully
end(getReplies);

procedure write():
calculate new version etc.
log "precommit" with data, file id, coordinator id, commit id etc.
reset NumberOfReplies, NumberOfYes, BusyNodes, ReceivedNo etc.
send "precommit" with parameters to each participant
run getReplies()

repeat until no BusyNodes left:
if any BusyNodes then
signal to client that volume is busy
run getReplies() again
end(write);

A.2 Participant read one/write all and majority
consensus, Write operation:

procedure precommit (parameters) :
log "precommit" with parameters

if the suggested version is lower than own version then
log reply '"mno"
send reply "no" with the cause "version error"
return

if the suggested version is higher than own version + 1 then
recover

if busy then
send reply "busy"
wait until not busy

if there is a precommit pending for the same file then
log reply '"no"
send reply "no"
return

if can commit then
log reply "yes"
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send reply "yes"
return
else
log reply '"no"
send reply "no" stating cause
return
end (precommit) ;

procedure commit():
log "commit"
commit the data
end (commit) ;

procedure cancel():
log "cancel"
end(cancel);

A.3 Read one/write all, Read operation

procedure read():
read the data and send it to the client
end(read) ;

A.4 Read one/write all, Recovery

procedure recover():
for each volume do
for each unresolved precommit with coordinator other than self in log do
send "query" to coordinator
wait for reply (commit, cancel, not ready)
if timeout then send "query" to each other participant
until reply is received
if result is "commit" or '"cancel" then
log result
if result was "commit" then
commit the data
end for

for each unresolved precommit with coordinator=self do
log "cancel"
send "cancel" to all participants
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end for
end for
end(recover) ;

procedure query():
look up the result of the precommit in the log
if a result exists then
send result
if no result exists and coordinator=self then
send '"not ready"
end(query)

A.5 Coordinator majority consensus, Write opera-
tion

procedure getReplies():
repeat the following until either NumberOfReplies=NumberOfParticipants,
Number0f{Yes,No}=NumberOfParticipants/2
or timeout:
receive a reply
NumberOfReplies := NumberOfReplies + 1
check the reply value:
if "yes" then NumberOfYes := NumberOfYes + 1
if "no" then NumberOfNo := NumberOfNo + 1
if a "no" is received and cause of "no" was a version error then
recover and start over
if "busy" then add node to BusyNodes
end repeat

if NumberOfYes = NumberOfParticipants/2 then
log "commit"
send "commit" to each participant
commit the write
return write successfully
else if NumberOfNo = NumberOfParticipants/2 then
log '"cancel"
send "cancel" to each participant
else
return write and state cause to client
end(getReplies);
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procedure write():
calculate new version etc.
log "precommit" with data, file id, coordinator id, commit id etc.
reset NumberOfReplies, NumberOfYes, NumberOfNo, BusyNodes, etc.
send "precommit" with parameters to each participant
run getReplies()

if getReplies doesn’t return the write and there are busy nodes then
signal to client that volume is busy
run getReplies() again
end(write) ;

A.6 Coordinator majority consensus, Read opera-
tion:

procedure getReplies():
repeat the following until either NumberOfReplies=NumberOfParticipants/2
or timeout:
receive a reply
NumberOfReplies := NumberOfReplies + 1
end repeat
end(getReplies);

procedure read():
send "versionQuery" with parameters to each participant
run getReplies()

while getReplies times out repeat the following
signal to client that volume is busy
run getReplies() again

end repeat

if a participant has a higher version of the data then
recover

read the data and send it to the client
end(read) ;
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A.7 Participant majority consensus, Read opera-
tion

procedure versionQuery(parameters):
send the requested version information to the coordinator
end(versionQuery)

A.8 Majority consensus, Recovery

procedure getReplies():
repeat the following until NumberOfReplies=NumberOfParticipants/2:
receive a reply
NumberOfReplies := NumberOfReplies + 1
end repeat
end(getReplies);

procedure recocery():
for each volume do
reset NumberOfReplies
send "query" to all other nodes
run getReplies()
choose the node with the highest version numbers
send "getLog" to chosen node stating the last committed/cancelled
entry in log
wait for reply
if timeout then
choose another node if you can and try again
if a log is received then
save the received log and go through it to catch up
else
copy the complete data

for each unresolved precommit with coordinator=self do
log '"cancel"
send '"cancel" to all participants
end for
end for
end(recover) ;

procedure query():
send current version numbers
end (query) ;
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procedure getLog(Lastlog):
look up Lastlog in the log
if Lastlog is still in log then
send rest of the log
else
send complete data
end(getLog) ;

A.9 Election, coordinator

procedure startElection()
reset NumberOfVotes
send ‘‘voteForMe’’ to all other nodes
repeat the following until either voteForMe is received from other node or
NumberOfReplies > NumberOfNodes/2 or
timeout:
receive vote
NumberOfVotes := NumberOfVotes +1
end repeat

if a voteForMe was received from another node then
vote

if timeout before enough votes then
abort own election

else
send ‘‘newView’’ to all other nodes with two-phase commit
if two-phase commit fails then
startElection
else
start acting as primary
end (startElection);

procedure vote() /* run when a voteForMe is received */
if other node has same or higher view and
other node has higher priority then
send vote to other node
if own election is going on then
abort own election
else
do nothing
end (vote) ;
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Appendix B

Advanced Replication
Algorithms

B.1 Overview

In this section I have collected the descriptions of various advanced replica-
tion algorithms and concepts that I have studied in this project but found
only marginally interesting for this report. Most of these are mentioned or
referred to previously in the report. This appendix is for the readers who
might be interested in reading a bit more about what lies at the outskirts of
this project.

B.2 Voting and Directories

The most common way to keep track of the latest version is to use incre-
mental version numbers for all items. When using voting algorithms for
replicated directories some problems may arise with version numbering of
directory items. In [3] it is noted that since concurrent updates of a direc-
tory are possible version numbering is difficult and produces a lot of traffic.
The authors suggest weighted voting algorithm for directories where version
numbers are given to both the items in the directory and the “gaps” between
them.

A gap is the “space” between two ordered objects where another object
might be inserted (in their examples the items are ordered alphabetically).
When an item is inserted it splits a gap in two. When the object is removed
the two gaps are merged together and the “new” gap gets the latest version
number. If one node has missed the removal of the file it can see that the
gap has a higher version number than the file and so the file must have been
removed.

In systems where update messages are logged, like Bayou and many epi-
demic systems, the version numbering problem of directories can be overcome
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by sending and logging delete messages for files. If all log entries and sent
messages are ordered correctly there will be no question whether the file is
deleted or not.

B.3 Volatile Witnesses

In [20] Péaris describes an available copy protocol with volatile witnesses.
Volatile witnesses reside only in volatile memory, which makes them faster.
They will lose all information at a server failure. In Péaris’ protocol the net-
work is assumed to consist of segments separated by gateways. One segment
is the main segment, containing the largest number of nodes. The segments
are assumed to have failsafe connection between the nodes, so that the only
possible partition points are the gateways. Nodes within a segment are guar-
anteed to get all updates within that segment.

Nodes with replicas are divided into local nodes, which reside on the
main network segment and can communicate directly with each other, and
non-local nodes, which communicate with other nodes through one or several
gateways. All non-local nodes keep a witness on the main segment or on a
gateway directly connected to the main segment.

All nodes and witnesses keep track of the current version numbers for
the data and the set of available nodes and replicas at the latest update or
reconciliation (the was-available set). Nodes are considered available if they
have synchronized correctly after the last crash.

Updates are allowed as long as there is at least one of the following
constellations available:

- one available local node

- one available non-local node and one available witness with the same
version number

- anode with a was-available set consisting of only itself, which is equiv-
alent to that a node is the last available replica.

Updates are sent to all available replicas and witnesses. Data can be read
from any of the above constellations. Also a recovering node can synchronize
its data from the same combinations.

This protocol is a good example of the use of witnesses to enhance the
performance of a protocol. The available copy protocol with witnesses is
better than the simple available copy protocol since it can handle network
partitions and still be pessimistic. The availability is increased without in-
creasing the number of nodes.



75

B.4 Dynamic Voting

Dynamic voting is an extension to the voting algorithm. The idea is to count
only the members in the latest majority partition if it becomes partitioned
itself, thus allowing several consequent network partitions and still letting
one partition continue operation. Dynamic voting has been presented and
developed by several authors. The latest model was presented by Jajodia
and Mutchler in [10].

When a network is partitioned the partition with the majority of the
nodes, called distinguished partition, is allowed to continue service. At the
same time the nodes in the distinguished partition note the number of nodes
- the site cardinality - in that partition. If the distinguished partition be-
comes partitioned the part which contains the majority of the previous dis-
tinguished partition is appointed as new distinguished partition. The new
distinguished partition updates its site cardinality to the current number of
nodes in the distinguished partition.

For example, say that the nodes A, B, C, D and E hold the replicas of a
certain file. At first, they all know that there are five nodes with copies of
that file. All have the site cardinality value 5. If E then receives an update to
the file and finds that it has lost contact with A and B it can propagate the
update to C and D, since they form the distinguished partition, being the
majority. Their new site cardinality is now 3. If E then loses contact with C
and D, too, it can not continue service, since it is a minority of the previous
three nodes. C and D can together form the new distinguished partition.

In the case of a tie, there must be some way to choose a partition which
can continue service. For this Jajodia and Mutchler propose the extension
dynamic voting with linearly ordered copies, also called dynamic-linear vot-
ing or lexicographic dynamic voting. The nodes are ordered in a priority
order and the highest ordered up to date node in the distinguished parti-
tion is called the distinguished site. At an even partitioning the partition
which holds the distinguished site forms the new distinguished partition. If
an uneven partitioning occurs and the distinguished site does not belong
to the distinguished partition a new distinguished site is appointed in the
distinguished partition.

As an example, take the group of nodes A, B, C, D and E. Ordering is
done in, say, alphabetical order, so that at first A is the distinguished site.
If E loses contact with A it forms a new distinguished partition together
with B, C and D, appointing B as distinguished site. If E and D then lose
contact with B and C they realise that the partitions are even and that the
distinguished site is in the other partition. Thus B and C form the new
distinguished partition and D and E cease service.

The distinguished partition must also contain at least one node that is
up to date. To determine this there are two version numbers associated
with each copy of a file: the physical version number and the logical version
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number.

The physical version number is updated whenever the file is updated,
either because of a write operation or when a node regains contact with
other nodes and is updated by the other nodes.

The logical version number is updated when a node regains contact with
the distinguished partition or when a write is committed in the distinguished
partition. All nodes with the same logical version number have the same
update site cardinality value (number of nodes in the distinguished partition
they have last belonged to).

The distinction of logical and physical version numbers allow nodes to
update each other even if they aren’t in the distinguished partition. It also
allows an up to date node to form a distinguished partition together with a
node which is only logically updated but not physically. The physical update
can then be done at any convenient time.

If a partition doesn’t contain any node with the same physical version
number as the highest logical version number in the partition, the partition
cannot become the distinguished partition even if it contains the majority of
the nodes.

A drawback with dynamic voting is that it generates a lot of network
traffic when a new distinguished partition is formed. All nodes need to be
aware of the current status of the other nodes.

B.5 Advanced Quorum Protocols

There have been many suggestions for advanced quorum protocols, in which
the quora in a large system are much smaller than the usual (N+1)/2. The
nodes are arranged in virtual patterns, like trees, grids or groups, and the
quora are chosen from the patterns. These algorithms are often designed for
database systems, which can have tens of replicas of the same data items.
Few of these protocols show significant improvements for systems with only
a few replicas. Since file systems seldom need that many replicas I will only
show an example of such a protocol.

Péaris and Sloope suggested in [19] a dynamic group protocol suitable for
distributed systems with many replicas at different nodes. It allows for n —2
successive replica failures in a system with n replicas. It also requires only
O+/n messages per access.

The principle of the protocol is to organise the nodes into a number of
groups. It is recommended that the groups are of equal size. A write quorum
must contain one node from each group and one complete group. A read
quorum consists of either a complete group or a node from each group. All
nodes in the quora must be operational. This ensures that read quora and
write quora intersect, and that all write quora intersect with each other.

The nodes are ordered lexicographically. Groups are assigned in lexico-
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graphic order, and to “fill up” the last group it is possible to let nodes from
the first group to be members of also the last group. For example the nodes
A-G could form the groups ({A B C}{D E F}{G A B}). Since A and B ap-
pear in two groups it is sometimes easier to find a write quorum, for example
{A B C D} would qualify.

In addition the protocol uses dynamic group reordering. Groups are
reordered whenever a node fails to respond to an access request or a node
recovers from failure. At reordering the number of groups can change but
the size of the groups remains constant. To assure mutual exclusion at
regrouping a write quorum must first be achieved. This allows only one
partition to regroup after a network partition.

Regrouping works in the same way as forming the original groups but
using only the operational nodes. Suppose node B would fail in the previous
example. Then the new groups would be ({A C DH{E F G}). The third
group is removed, since the last node G moved to the second group. After
regrouping a write quorum from the new groups is chosen for update, to
ensure that all groups contain at least one current copy. In the case when
there are only two groups left the protocol reverts to the previously described
dynamic linear voting protocol.

The protocol has a few weaknesses. First of all it doesn’t tolerate the
simultaneous failure or partition of a whole group. It also requires a sufficient
access rate to detect failures in a reasonable time. Both problems can perhaps
be overcome, but the authors also conclude that further investigation is
necessary.

B.6 View Consistency

Goel and Popek [9] have implemented view consistency guarantees on top
of the Ficus distributed file system. Ficus is an optimistically replicated file
system. A more detailed description of Ficus can be found in section D.

In their system clients or groups of clients, called entities, take care of the
view consistency. Thus it can be implemented without changing the servers.
The only requirement is that an entity can access version information for the
data. This can be done separately, but to increase performance the version
number should be sent together with the file data. In Ficus this requires a
slight modification of the server.

Each entity stores a database of view-entries for each accessed file, con-
taining information about the last accessed version and replica. View-entries
are created for each file that is accessed when the file is accessed for the first
time. Fach time a file is accessed the corresponding view-entry is modified.
View-entries are cached in the kernel together with the files’ vnodes, which
reduces the amount of lookups in the view-entry database. View-entries can
be garbage-collected when all file replica versions are known to be later than
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the view-entry version. Entities can be persistent or transient. Databases
for persistent entities are stored in stable storage while databases for tran-
sient entities are removed when the entity terminates. Entities can also be
distributed.

It is sometimes necessary for a client to change access to some other
replica. This occurs when the current replica becomes unavailable, gets
too high load compared to other replicas or becomes inconsistent. In this
algorithm access is changed if a view-consistent replica with significantly
lower access time is found. In the case when no consistent replica can be
found (the previously accessed replica becomes unavailable) the file becomes
unavailable for that entity. It can still be available to other entities with
other views.

Some details are not yet finished at the time of the publication of the
article, for example distribution of entities and the deletion algorithm for
files.

The modified Andrew Benchmark (mab) and a series of tests with com-
monly used file operations like cp and ls shows an overhead of 5 to 12 percent
when comparing a view consistent Ficus implementation to a standard Fi-
cus implementation. A grep benchmark shows an overhead of 185 percent if
version information is obtained separately, but less than 5 percent if version
information is received together with the data. This is because the cost of
running grep on a single file is only about twice as much as the cost of getting
version information for the file.

B.7 Dynamic Replica Placement

For better performance in large systems replicas should be able to be created
where they are needed most. It is even better if this is done automatically.
In [16] this is called fluid replication. Replicas are automatically created
when a client gets too low access performance. When the replica is not in
use anymore it is automatically deleted.

Each file has a home server, which acts as a kind of master replica. In
addition there are several way stations, which can hold replicas on demand.
The way stations are spread out in the network so that they can give fast
access to the clients.

Performance measurements are made all the time, and when the client
finds that the access time to a file has grown too much it tries to locate a
way station with shorter access time. For this a special multicast is used.
The client asks for a way station with a predefined maximum latency. It also
tells what service it wants replicated. After receiving replies from the way
stations it chooses the closest way station or a way station with acceptable
latency that has already got a replica of the service asked for.

Three different models for consistency can be used. Latest-write lets
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writes be ordered by timestamps, and in the case of conflict the latest write
wins. Optimistic consistency lets conflicts happen but detects them soon
and calls for resolution. Pessimistic consistency demands that the writer
gains exclusive access to a file before writing. The consistency model can be
decided individually for each file.

The way stations are responsible for forwarding updates to the home
server. This is done periodically. Updates are forwarded as operations and
are logged. As an optimization self-cancelling operations don’t have to be
forwarded. An example of this is when a file is created and deleted a short
while later. The home server can remove old entries from its logs when it
sees that all replicas have received the particular updates. When a replica
gets outdated it can either be invalidated or actively updated by pulling
updates from the home server. The strategy can be chosen depending on the
situation.

Replicas are destroyed when no clients no longer access them. Replicas
can also migrate from one way station to another if the client using it wishes
to use the other way station. The first way station must first send all updates
to the home server. The second way station will then retrieve a replica of
the file from the home service.

At the time of the publication of [16] only a prototype has been imple-
mented. Tests and simulations still need to be done. Still, the concept is
worth notice.
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Appendix C

Evaluation of Algorithms

Some amount of work has been done to evaluate and compare different repli-
cation algorithms. Evaluation has been done either by simulation, with
“real life” tests or mathematically. Often simulations have been done by
the authors of the algorithms, but there have also been several “external”
evaluations and comparisons of algorithms. Another topic for studies is op-
timization of variables in the algorithms.

Many of the algorithms have been designed and evaluated several years
ago on hardware and software that today seem nearly antique. Thus many
simulations and tests can be assumed unreliable. Even comparisons between
algorithms might show different results today, since the bottlenecks might
have moved to favor other algorithms. Thus it is difficult to find relevant
studies. Here I will present the results from three papers evaluating, com-
paring or optimizing algorithms.

C.1 Evaluation

In [11] Johnson and Raab present a tight upper bound on the performance of
mutually exclusive replication protocols. They show that if the “availability”
is A,0 <= A <=1, for a single copy protocol with optimal placement of
the copy, then the upper bound for availability in a replicated system which
maintains consistency and mutual exclusion is VA.

Three protocols for mutual exclusion are considered. The reference pro-
tocol all other protocols are compared with is the single copy protocol, where
all access to a file goes through one server. This can either be a primary
copy of multiple replicas or a non-replicated single server. Later the single
copy protocol is generalized to a relocatable single copy protocol, where the
copy can be moved. The availability of the single copy protocol is equal to
the probability that the single copy is available.

Secondly, an optimal best component protocol is considered. The best
component protocol is purely theoretical, since it requires complete knowl-
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edge of the network state. In the paper the best component protocol is shown
to give equal or better availability than any other mutual exclusion protocol.

The third protocol considered is the majority consensus voting protocol.
It is used as an example of a simple protocol that provides mutual exclusion.
The majority consensus protocol is not optimal in most cases and is thus
used to show that the upper bound of availability is tight.

In the paper it is proved that there is some sequence of primary copies
that if a relocatable single copy protocol is used the accessibility for the
best copy protocol is the square root of the accessibility of the single copy
protocol. They also show that this upper bound is tight and that the upper
bound can not be improved if the availability is more than 0.25.

In addition, finding the optimal placement for a single copy is discussed.
Though the problem is impossible in theory, it is often feasible in practice.

The value of this work is that it shows that replication (with guaranteed
consistency) is not always worth the trouble, since it might in well-planned
networks give very little improvement to the performance.

C.2 Comparison

Comparison of protocols by simulation has been done (among others) by
Paris, Long and Glockner in [18]. They simulated a network environment
with eight nodes. For eleven different configurations with replicas on three to
five nodes they measured the unavailability proportions and mean duration
of unavailabilities for three protocols: majority consensus voting, dynamic
voting and dynamic linear voting (a.k.a. lexicographic dynamic voting).

The network was designed so that it contained a few, well defined possible
partition points. Software and hardware failure intervals and durations were
different for different nodes. In this study a file was considered available
if there existed a distinguished partition, not counting the fact that users
might not have contact with this partition when the network is partitioned.

The eleven configurations were designed so that some could be parti-
tioned at one or two points. Four of the configurations used three replicas,
four had four replicas and the last three had five replicas. More than five
replicas were considered too costly to uphold for a network this small.

The result contained few real surprises, showing that dynamic linear
voting gives higher availability than majority consensus voting and dynamic
voting for all configurations. Dynamic voting showed in some configurations
lower performance than majority consensus voting. This was the case in
configurations where the network is often partitioned into two equally large
parts.

Though the comparison between the three protocols gave few surprises
the study was of value by pointing out the value of placing the replicas
optimally. Some protocols would give very low performance for certain con-
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figurations, for example if a majority consensus protocol is used in a system
with many replicas and many possible partition points. Still, on some points
the study was incomplete. For example, measuring response times or mes-
sage overheads to uphold the protocol were not a part of the study. High
protocol overheads might well be considered worse than lower availability.

C.3 Optimization

One reason for evaluation of algorithms is to find optimal solutions. It can
also be important just to show that there is a limited, optimal solution.

Optimal replication degrees and quorum assignments are studied in [1].
For two protocols, read one/write all and majority consensus voting, the
authors try to determine the optimal quorum assignments and degrees of
replication. Two types of behavior when service is unavailable are stud-
ied: either the transaction aborts or it stalls until service becomes available.
Their work is mainly focused on distributed database systems, but can be
interesting also for file systems.

Their system model consists of a number of identical nodes, each having
a replica of the data and each having one vote. Transactions are either read
or write transactions and arrive as a Poisson process. They use a standard
quorum consensus protocol, so that a read quorum must be accessed to read
a file and writes must be done to a write quorum. Service is assumed to be
instant.

In the first model, where a transaction aborts if a quorum is unavailable
the degree of successful operations is to be optimized. For read one/write
all they find mathematically a limit for the optimal number of replicas. If
majority consensus voting is used performance will increase when the number
of nodes is increased. Also they find a mathematical formula for the optimal
quorum assignment. These results are also tested numerically.

In the second model, where transactions stall until they can be completed,
the mean transaction time needs to be minimised. For this model they only
use numerical analysis to find the optimal assignments. Not surprisingly
they find that read one/write all gets lower performance at higher degrees
of replication while higher degree of replication for a majority consensus
protocol increases availability. Depending on the mix of read and write
transactions different values for read and write quora are optimal. A majority
consensus protocol (majority needed for both reads and writes) is optimal
for many mixes, while read one/write all is best for systems with mostly
reads and few writes.

This work is interesting since it shows that quorum assignments and
degrees of replication can be optimised depending mainly on the mix of read
and write operations.
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Appendix D

Case Studies

D.1 Overview

Many distributed file systems using read-write replication have been created
throughout the years. Most of them are not in use anymore, and some
never even got used more than in the lab that made them. Some rely on
specific hardware configurations and are thus quite difficult to adapt to other
environments. Still, it is interesting to look at what has been done and how
well the projects have succeeded.

In this appendix I will present some distributed file systems. First, NFS
is described briefly. Though it doesn’t use replication it is very important,
since many other file systems are based on NFS. Thereafter two optimistic
replicated file systems, Ficus and Coda, are presented. The next two file sys-
tems, Echo and Harp use primary copy schemes. Harp also uses witnesses.
Deceit uses a kind of quorum-consensus approach, combined with write to-
kens. Another token-based system is Huygens, which uses a virtual ring for
communication and failure detection. The next system, Bayou, is a storage
system using epidemic update propagation. The Frolic replication scheme
gives replication-on-demand in wide-area systems. The last file system, HA-
NFS, is an example of a file system using special hardware configurations to
achieve higher availability.

D.2 NFS

Sun’s Network File System Protocol (NFS), described in [31] and [32], forms
the basis for many distributed operating systems. NFS is a protocol for the
client-server communication. It hides the system specific details, like trans-
port protocols and data representation formats. Servers using completely
different operating systems and hardware can communicate with each other
using NF'S.

NFS is based on Remote Procedure Call (RPC) which provides an ab-
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straction above the transport layer. This allows for many different transport
protocols to be used. Also there is a specified eXternal Data Representation
(XDR) format to provide a standard data representation.

The NFS protocol is designed to be stateless. This increases failure tol-
erance, since no state needs to be restored after a recovery. Separate services
implement stateful operations like locking. All procedures in NFS are syn-
chronous. In NFS 3 there is one exception, which is an asynchronous write.
Some state can be kept to increase performance, like a read-ahead cache.

The file system consists of files and directories with string names. Since
different operating systems may have different path representations NFS
looks up one component of the path at a time.

Several types of authentication are supported. With standard UNIX
authentication the servers must use the same user ID lists or map user and
group ID:s locally. It is also possible to use DES encryption or Kerberos
authentication (in NFS 3), in which case the user and group ID:s are global.

D.3 Ficus

D.3.1 Overview

Ficus ([17], [22]) is an optimistically replicated file system developed at the
Department of Computer Science at University of California, Los Angeles.
The goals of the project are both to test the concept of optimistic replication
and to build an usable system.

Ficus is based on single-copy availability, which means that a file can
be updated as long as there is at least one replica available. It provides a
guarantee that no updates are lost. Conflicts are reliably detected and dealt
with either automatically or manually. Ficus is a client-server system, but
is designed so that there can be both a client and a server running on each
machine. This makes disconnected use easy to provide, since you only have
to replicate the files you need to the file server on your laptop and disconnect.

The Ficus file system implements the VFS interface to the user and
uses the standard Unix File System (UFS) for storage. Files are kept in
volumes, similarly to the AFS file system. For connecting volumes to the file
system Ficus uses a technique called grafting, which is similar to mounting.
Volume location information is kept in the grafting point, so a separate
volume location database is unnecessary.

D.3.2 Replication

In Ficus each file is replicated individually. A replica is chosen by the client
when the file is opened, and will serve consequent requests from the client
unless it goes down or is partitioned from the client. This ensures consistency
to the client as long as the chosen replica is available.
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The replication scheme is fairly simple. When a file is updated the client
sends the update to the chosen replica, which then sends out update noti-
fication messages to all other replicas. The update is pulled by the other
nodes asynchronously. If a node is unreachable and does not receive the up-
date notification the file system will be inconsistent until the node becomes
reachable by some of the updated nodes.

The optimistic replication makes the system highly available to the users.
The reconciliation scheme described below ensures that all updates are even-
tually spread to all replicas as long as no replica becomes permanently dis-
connected. While reconciliation is epidemic, the updates are at first spread
with an available copy scheme, which makes update propagation faster than
if a purely epidemic scheme was used.

D.3.3 Dealing with Conflicts

The no lost updates guarantee leads inevitably to conflicts when for exam-
ple a file is edited in both partitions of a partitioned network. The authors
claim that such conflicts are rare, showing conflict statistics in [17] to con-
firm their theory. During the nine month long statistic gathering time the
update/update conflict rate was 0.0035 % for all volumes. Also other conflict
types are shown to be rare.

Dealing with conflicts consists of two parts: detecting a conflict and
resolving it. Conflict detection is done pairwise between the nodes. Period-
ically each node contact one other node to reconciliate. The nodes compare
their version vectors, which contain information about all updates known to
the node. If the version vectors are identical there is no need to reconciliate.
If the version vector of one node is strictly higher than the other, the other
node will pull the latest version and update its version vector to a copy of the
higher. If the vectors are different but none of them is strictly later, there is
a update/update conflict and a resolver is invoked to solve the conflict.

If the update semantics for a file is known an automatic resolver can be
made to handle conflicts in files of that type. For directories, the resolver is
supplied by the file system. There are many types of conflicts that can occur
in directories, and Ficus’s solutions for these are discussed at length in [17].
When a resolver can’t be found for a certain conflict an e-mail is sent to the
user(s) involved and they will have to resolve the conflict manually.

D.3.4 Evaluation

In tests with the Modified Andrew Benchmark (MAB) operations in Ficus
show a medium time overhead of about 10-25 % compared to non-replicated
UFS. Operations like copy show much higher overheads, since they are highly
dependent on the number of replicas.

Since the whole file is pulled when an update notification is received high
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update rates give very high load on the replicating servers. This could be
optimized by allowing the nodes to pull only parts of the updated files or
using a log-based update propagation.

Ficus is an example of a optimistic distributed file system that works.
Conflicts are reasonably rare and the automated resolvers take care of most
of them. The main administrative costs lie in deciding which files to replicate
and designing the network layout.

D.4 Coda

D.4.1 Overview

Coda was developed at Carnegie-Mellon University by partly the same team
that developed AFS. Coda has inherited many features from AFS, like the
client-server model, caching clients and the consistency model in the absence
of failures. The main difference is that Coda allows optimistic read-write
replication in addition to read-only replication and that Coda has been de-
signed to allow disconnected use, which increases availability even more.

Coda has been described briefly in [27]. An older but more detailed
description can be found in [25]. More information can also be found on the
WWW at Coda’s web site [www.coda.org] and in [5].

D.4.2 Replication and disconnected operation

The replication scheme in Coda is an optimistic read one write all, which
means that reads can be done from any available replicating node, and writes
are done to all available nodes which hold a replica of the current volume.
This makes the system highly available, since both reads and writes to a
volume are allowed as long as any node with a replica of the volume is
reachable. In addition, the client will go into disconnected mode if all nodes
become unreachable.

As in AFS, the replication unit in Coda is the volume. Each volume is
associated with a Volume Storage Group (VSG), which is the group of servers
replicating the volume. The system also keeps track of which servers in the
VSG that are accessible at the moment, calling this group the Accessible
VSG (AVSG). The client has to keep track of the AVSG by periodically
probing the members in the AVSG and VSG.

A file in a replicated volume can be read from any server in the AVSG.
At a cache miss in the client a preferred server is appointed to that file,
chosen randomly or by some criteria like proximity or load. The preferred
server contacts other servers in the AVSG to check that it is consistent. If
it isn’t, the inconsistency must be resolved before operations can be done to
the file. If the preferred server finds more recent (strictly newer) updates a
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new preferred server is appointed among the updated servers and the system
is notified that a refresh is needed.

When a file is opened a callback is established to the preferred server.
The callback is broken whenever the preferred server gets an update or the
client detects mismatches in the volume version vectors. Also when the
AVSG grows all callbacks are dropped, since the new member might be
more recently updated.

Disconnected operation is handled as an exceptional state. At first possi-
ble occasion the client goes into normal connected state. During disconnected
operation all files are stored in and read from the cache. A cache miss will
mean that work cannot proceed until the client becomes connected again.
Thus cache misses are to be avoided. To diminish the probability of cache
misses the user can specify a set of files which should be retained in the cache
as much as possible. It is also possible to let Coda determine which files are
needed for a specific set of actions and then mark these files as “sticky”.

Since many operations are to be done on several servers at the same time
Coda uses a special MultiRPC parallel remote procedure call together with
hardware multicast.

D.4.3 Dealing with Conflicts

When the network is partitioned or during disconnected operation a file can
be updated simultaneously on nodes without contact with each other, which
can lead to inconsistencies. Inconsistencies are dealt with by detection and
resolution. A version vector is used to compare the updates of servers, and
in the case of a difference the system will try to repair it. Strictly newer
versions can update older versions easily, and conflicts can be resolved by
Coda or by application specific resolvers. When the system is unable to
resolve the conflict the user is notified for manual repair.

As a curiosity the authors mention another practical use for resolution.
At a disk failure the broken disk can be replaced with a new, empty disk.
Then resolution is ordered and the disk is automatically brought up to date.

D.4.4 Evaluation

In tests with benchmarks non-replicated Coda gets about 21% time-overhead
compared to the standard Unix file system. With replication this rises with a
few percent for each replica. Copy is the slowest operation, giving 73% over-
head with unreplicated coda and over 100% extra with a few replicas. The
authors compare this to AFS and point out that AFS has similar overheads
compared to UFS.
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D.5 Echo

D.5.1 Overview

The distributed file system Echo, presented in [4] uses a combination of
optimistic and pessimistic primary copy replication. In Echo files are stored
in two types of volumes. Name service volumes contain mainly directory
hierarchies while filestore volumes contain files. The name service volumes
are optimistically replicated to give high availability while filestore volumes
are pessimistically replicated to maintain consistency. There is also a global
root volume.

Location of a file is done in three steps. The first part of the path is the
domain name of the site where the file is kept, for example “/com/dec/src” for
“src.dec.com”. The Echo name service uses ordinary Domain Name Service
(DNS) for resolving this part. The next part of the path consists normally
of name service volumes and is resolved by the Echo name service. Finally
the last part of the path consists of filestore volumes and a filename, which
are resolved by the Echo file service.

Echo caches files on the client computers. The cache is kept in volatile
memory for speed. Updates are write-behind, so that they are flushed to
the server at file close. A token system is used for keeping cache coherence.
A write token must be obtained to write to a file, and for reading a read
token must be obtained. Several read tokens can exist simultaneously for a
file, but the write token is exclusive and neither another write token nor any
read tokens may exist for the same file simultaneously. This is not the same
as locking of the file, since the token is only needed when the read or write
is actually committed.

When a write is to be committed to the server the client requests a
write token from the primary server. If a write token is already given to
another client the token is revoked. The client which previously held the
token commits all writes in queue before giving back the token. Read tokens
are simply revoked. When no other client holds a token for the file the
requesting client can get a write token. Read tokens are handed out in a
similar way. This approach is inefficient if many clients share the same file
but was sufficient in the environment where Echo was used.

D.5.2 Replication

The original replication algorithm in Echo is described in [14], but some
modifications have been done in the algorithm described in [4].

As mentioned earlier there are two forms of replication in Echo. Name
service volumes are optimistically replicated - reads and writes can be done
at any replica. Updates are propagated asynchronously to the other replicas.
This increases the availability of directories.
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Filestore volumes are pessimistically replicated using a primary copy
scheme. There are several possible configurations for the servers and disks:
one server and disk, two servers and one disk, two servers and two disks,
two disks but only one server etc.. Election of the primary server is done
with weighted majority consensus voting, where the votes are assigned with
regard of the configuration of disks and servers. Witnesses can be included
to make the number of servers odd.

All file system calls are sent to the primary copy. Updates are written to
disk at the primary server and recorded to a log. Log entries are sent to all
replicas before the write operation returns. The other replicas commit log
entries asynchronously.

Read and write tokens for files are also replicated, so that they will not
be lost if the primary server crashes.

D.5.3 Election and Recovery

The primary (master) server keeps track of the slave servers by periodically
contacting them. If either the master fails to receive an answer from a slave
or a slave doesn’t get contacted in time it starts election. Also if the master
manages to contact a slave which is not recorded as alive it will start election.

Periods between elections are ordered with epoch numbers. After each
election a new epoch number is recorded. Several epoch variables are used to
keep track of how recently a node is updated. At an election the node that
has the highest priority among all reachable up to date nodes is voted for as
the new master. If a node can collect a majority of the votes it becomes the
new primary copy.

Reconciliation of a recovering node is done simply by sending it the up-
date logs for all updates it has missed. If the update logs aren’t old enough
reconciliation is done by completely copying the contents of an up to date
node.

D.5.4 Evaluation

Neither of the articles referenced above show any figures for the performance
of Echo. Echo was in use for almost two years and was used by about 50
researchers. FEcho offered good reliability: during the period there were 10
disk failures, none of which caused any loss of data. Performance was thought
to be good and the bottleneck was in the hardware. The development of Echo
was stopped because the operating system on which it was running would
not be ported to modern platforms.
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D.6 Harp

D.6.1 Overview

Harp is a pessimistic replicated file system to be run within a distributed
file service based on NFS. The replication scheme in Harp is a pessimistic
primary copy scheme. It can be used with any VFS-based NFS compati-
ble implementation and guarantees the same semantics as NFS. Harp was
designed at the Laboratory for Computer Science at MIT and is described
in [13].

Every file server in Harp logs the updates to files. To increase perfor-
mance logs are kept in volatile memory. Every server is equipped with an
UPS to give the system time to save the logs in permanent storage in the
case of a power failure. There are also mechanisms for recovery of the logs
after a software failure.

D.6.2 Replication

In harp each file is managed by a group of servers. One server in the group
is the primary and the rest are backups. Both read and write operations are
handled by the primary server. As in most pessimistic systems a majority
of the nodes must be operational in order to continue service.

One of the servers in the group is appointed as designated primary, which
means that it will act as primary server whenever it can. Half of the rest
of the servers are designated backups, which store full copies of the files.
The rest of the nodes are witnesses and store only version information. The
designated primary and the designated backups form together a majority
and thus there will always be at least one full copy of a file available if at
least a majority of the nodes are up.

A write operation consists of a two-phase commit protocol. First the
primary server sends log entries with the modification to the backups. When
the backups receive the log entries they append them to their logs and send
acknowledgements to the primary. To distinguish a committed part of the
log from uncommitted parts each node indexes the last committed operation
with a commit point. When the primary has received acknowledgements
from the backups it advances its commit point and sends messages with the
new commit point to the backups.

Committed changes are taken care of by a apply process, which performs
the system operations for the operations in the log. Writes are carried out
by the Unix file system. Another process keeps track of which writes have
been committed to the disk. Records for updates that are completed are
removed from the log. The nodes exchange information about how far they
have committed.

Reads can be processed by the primary as long as it has had contact
with the backups at most a certain time interval ago. The backups will
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always wait this long before they start an election. This is to prevent that
a partitioned primary services a read while the other nodes have elected a
new primary and have committed new writes.

D.6.3 Election

When a node crashes, becomes partitioned or recovers from a crash or net-
work partition an election is done. In Harp this is called a view change. In
the case of recovery from crash or network partition the recovering node will
try to come up to date by communicating with a node with a higher view
number and will then initiate a view chance. If a node finds that it cannot
communicate with another node in the current view it also initiates a view
change.

If the primary node has crashed or lost contact with the backups the
backups will appoint a new primary among the designated backups. To
compensate for the loss of a backup, both when a backup has crashed and
when a backup is appointed as primary, a witness is promoted and will take
part in all file operations. A promoted witness starts storing log messages
in volatile memory and will not erase the log until it is demoted. If the log
grows too large the oldest parts of it can be stored in non-volatile memory.

At the view change the coordinator (the initiator of the view change)
suggests a view change to the other group members. When it has received
enough answers from members which agree to a group change it stores a
new view number on disk and updates nodes which lack parts of the initial
state of the new view, for example by sending log records for uncompleted
operations to promoted witnesses. Unpromoted witnesses can be kept in
“standby” by letting the primary send log messages to them as well as to the
backups.

D.6.4 Evaluation

Consistency in Harp is guaranteed by the replication algorithm, which gives
the same semantics as for pure NFS. Availability is increased by allowing
failures as long as a majority of the nodes are operational. When a witness
is promoted it receives logs for all operations that haven’t been completed at
all the backups and the primary. This makes makes recovery quicker, since
a failed node can copy the logs of a witness provided that it hasn’t had a
media failure.

Using volatile memory for storing logs increases performance but also
introduces some risks. If both the primary copy and the backups crash
all changes not yet written to disk will be lost. This sort of crashes were
considered unlikely when Harp was designed.

In measurements using the Andrew and Nhfsstone benchmarks a Harp
system with one group showed lower response times than unreplicated Unix,
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since disk writes are replaced with message roundtrips.

D.7 Deceit

D.7.1 Overview

Deceit [28] is a distributed file system which was developed at Cornell Univer-
sity. Deceit uses the standard NFS protocol, and can therefore be used with
standard NFS clients. File servers are grouped in cells within the global name
space. Replication is done within cells on demand with at least a defined
minimum number of replicas. Each file is associated with a token holder
replica, managing the number of replicas for that file. The token holder
changes to whichever replica server got the latest update request. Requests
to a file can be sent to any file server. If the server doesn’t have the file it
propagates the request automatically to a server which has.

D.7.2 Replication

For each file in Deceit there is a minimum replication level, a token holder
and a file group. The file group is a group of servers which hold a replica of
a file or have the file cached. The token holder is responsible for keeping up
the number of replicas. Whenever it notices that there are too few replicas
it will generate new replicas.

New replicas can also be created when a file is read from a file server that
hasn’t got a replica of the file. In addition to fetching the file from another
node it asks the token holder to create a replica locally to increase future
performance. Users can also ask for replicas on their local servers. Excess
replicas are deleted in least-recently-used order by the token holder.

When a server receives a write request for a file it holds it must acquire
the write token for that file. It sends out a token request to all other nodes
in the file group. The node holding the token releases it and sends out a
token pass message. Reads can served by any server holding a replica of the
file.

After a node has acquired the write token, or when the token holder
receives a write request, it synchronously sends out a message to all replicas
marking the file as unstable. If it gets answers from at least a certain number
of replicas assumed to be the safety level for that file (a kind of write quorum)
it commits the update. If some nodes fail to answer new replicas are created.
When the file hasn’t been written to for a while it is marked stable.

D.7.3 Recovery From Failures

If a token is lost due to crash or when the network is partitioned a new
token can be generated. A majority of the nodes must be reachable when a
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new token is generated. The number of nodes is assumed to be equal to the
minimum number of replicas. To protect from the possibility that the file
gets two tokens when a new token is generated a token generation implies
that a whole new file is created.

Each file is associated with a version number pair (v1v2). When a new
token is created while the network is partitioned the new file gets a higher
version number vl. v2 is increased at each update. To see if a node is up
to date only the version numbers need to be compared. A user can access
different versions vl of a file by indexing the file name with the version
number. The version number are stored together with the files in non-volatile
memory.

Since the number of replicas can be more than the minimum number of
replicas it is possible to have a partition where both partitions can have a
write token. If a file is updated in both partitions there will be two versions
available of that file when the network partition is resolved. Resolution of
conflicts in the file is then up to the user.

D.8 Huygens

D.8.1 Overview

Huygens [8] is a replicated file system implementing pessimistic replication
with tokens. Files can be either unshared or read-shared, where writes are
expensive for read-shared files.

Files are organized in volumes. Each volume has a set of servers which
hold replicas of the files in the volume. Files in the volume are replicated
individually, so that all files aren’t stored at the same nodes. The nodes in
a volume are ordered in server groups. All members in a server group can
communicate with each other and know which other nodes are in the group.
All nodes are members of one and only one server group.

Communication between the servers in a server group is sent through
a virtual ring passing all servers. A keep-alive message is kept circulating
through the ring to detect failures. When a failure is detected the ring will
be rebuilt excluding the failed node. Separate rings (server groups) will also
eventually merge if they gain contact with each other.

D.8.2 Replication and Token Management

There are two kinds of tokens in Huygens: read tokens and exclusive tokens.
A node holding a replica of a file can either have a read token or an exclusive
token. Read tokens can be held by all nodes for a file while only one node
can hold an exclusive token for a file.

To serve a read request for a file a node must have a read token or an
exclusive token. Nodes holding a read-shared file normally have a read token
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for the file. When a write request is issued, the node receiving the request
must withdraw the read tokens from all other nodes to gain an exclusive
token. The other nodes will remember which node holds the exclusive token.

Unshared files are simply files which reside on only one node holding
permanently the exclusive token for the file. Unshared files can be trans-
formed into read-shared files, but the process is expensive. Since writes to
read-shared files also are expensive it is recommended that frequently written
files are kept unshared.

D.8.3 Dealing with Failures

It is desirable that as much service as possible can be offered during a parti-
tion. When a partition occurs there can either be read tokens or an exclusive
token for a file. The level of service that can be offered depends on the lo-
cation of the tokens and on the configuration of the partitions.

If the server group for a file finds that it is complete even though parts
of the volume have been partitioned it can continue normal service for the
file.

When some nodes in the group are missing the level of service depends
on the number of missing nodes. If the number of missing nodes in a volume
are too few to form an active partition (less than a preset threshold value)
service can continue as usual. If both partitions are found to have more than
threshold number of nodes, more replicas will be generated so that there are
threshold number of replicas in both partitions and the file is marked read-
only until the network partition resolves. If a partition finds it has less than
threshold nodes it will not offer service for that file.

When the network is partitioned during an update the write is attempted
to be committed in both partitions. Then the file is marked read-only for the
duration of the partition. If the node holding the exclusive token becomes
completely isolated it cannot know whether the other partition can complete
the write. In that case it must suspend operation until the partition is
resolved.

D.9 Bayou

D.9.1 Overview

The Bayou storage system [21] is designed for use in a collaborative envi-
ronment and uses anti-entropy to lazily propagate updates between servers.
Bayou allows dynamic change of the number of replicas and reconciliation
between any pair of replicas. The replication is optimistic, since inconsisten-
cies can occur. Application-specific resolvers are used for conflict detection
and resolution. Anti-entropy sees to that all replicas eventually receive all
updates as long as they aren’t permanently disconnected from each other.
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Bayou uses access control based on public keys. A single well-known
server signs certificates which grant different levels of access to file groups
for users. Users with certain certificates for a file group may sign and revoke
certificates for other users for the same file group. Authentication is done
once per session between the client and the server.

D.9.2 Replication and Reconciliation

Replication in Bayou can be done with any number of nodes. Reads and
writes can be sent to any replica. When a replica receives an update from a
client it logs it and updates the local copy of the file. The nodes keep up an
ordered log of the writes they have received form a client or by reconciliation.
The logs are stored on disk. To reduce storage they can be truncated by the
nodes at will. Because of this it is sometimes necessary to reconciliate by
copying the whole database. The nodes may also choose not to perform
reconciliation.

Each replicating node chooses one or several other nodes with which
they reconciliate. Reconciliation is a one-way process done pairwise between
the nodes. At reconciliation the receiving node sends its version vector to
the sending node. The version vector maintains information of the versions
known to be known by all other nodes. The sender then sends all writes
which the receiver doesn’t know of. Anti-entropy will see to that all updates
will eventually reach all connected nodes.

Writes received from clients by a node are ordered in accept order by the
node. Thus all write operations received by the same node will be totally
ordered. This order is preserved during reconciliation. Writes committed
concurrently at different nodes must be merged in a suitable way. Resolu-
tion of such conflicts is application-specific. Rollback of the log might some-
times be needed to insert writes earlier into the log. An undo-log, stored in
volatile memory, is used for undoing the effects of write-log entries. A write
is considered stable when it is certain that it will not need to be rolled back.

Replicas can be created and removed dynamically. A new replica an-
nounces itself by sending a creation write to another node. In return it gets
a server ID based on the other server’s ID and a timestamp. The new server
will be allocated a place in the version vector and the creation write is prop-
agated to other nodes in the same way as ordinary writes. Removal of a
node is done in a similar way by sending out a retirement write.

The one-way nature of the reconciliation in Bayou makes it possible to
reconciliate using portable media like a floppy disk. Log entries are copied
to the disk and any server containing at least up to the oldest entry on the
disk can be reconciliated from the disk.
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D.9.3 Evaluation

Simulations have showed that the time it takes to perform anti-entropy be-
tween two nodes is linearly dependent of the numbers of missing writes. The
anti-entropy time is also dependent on the size of the version vector. The cre-
ation pattern of the replicas determines the size of the version vector, since
the server ID:s are recursive, each containing the server ID of the server first
contacted when creating a new replica.

As usual there is a trade-off between storage and bandwidth - either large
write-logs must be kept or full database transfers may become more frequent.
Each server decides for itself how long logs to keep.

Bayou is interesting to look at since it is an example of a storage system
based on anti-entropy, though the demand for application-specific resolution
makes it unsuitable to be used as a base for a file system.

D.10 Frolic

D.10.1 Overview

Frolic [23] is a high-level scheme for replication in wide-area networks. It
shows a slightly different approach to file usage than many other file systems.
The model for a network is assumed to be a set of clusters, each containing
file servers, connected via a backbone. The clusters can be spread far away
from each other like the different offices of the same company. Users stay
normally within the same cluster. Data is shared between clusters and people
in different clusters work on the same projects and access the same files. In
such a network the file access time may be high for a file located at another
cluster. To improve availability Frolic uses “replication-on-demand” to create
a replica in the local cluster. Locating a valid copy of a file and keeping
consistency among the replicas are also discussed.

D.10.2 Replication

When a client requests a file that has its owner in another cluster a local
replica is made in the local cluster. The file can be read from any replica,
but only one cluster at a time has write access (called the owner). Frolic
operates only on cluster-level, so access within the owner cluster is controlled
by a lower level.

Four different techniques for locating the owner replica are discussed:

1. A central server is master for each file. This has the drawback that
availability and latency is same as that of the central server.

2. All servers are asked with a multicast message. This is a simple tech-
nique but quite expensive.
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3. The server wanting to find the owner asks the server which it last
knew to be the owner. If that server isn’t the owner any more it
asks the server which took over the ownership from it etc. This has
the drawback that in the worst cases all other servers must be asked
before the owner is found.

4. A location server is used to keep track of file ownerships.
Three techniques for maintaining consistency are discussed:

1. Send updates to all servers when a file is closed. This is quite expensive.

2. Get updates when a file is accessed in a replica. This is less expensive
since multiple updates are fetched at the same time. The drawback is
that the access time suffers.

3. Send an update to one other server where the file is accessed often
and let the other servers fetch updates when needed. This is a hybrid
between 1 and 2.

No technique or policy for changing the owner of a file is discussed.

D.10.3 Ewvaluation

Simulations of the system were done with a simulator implemented in Csim.
The simulation showed that with replication the access time remained almost
constant while workload intensity increased. Without replication the access
time increased notably. Also the backbone network utilization increased less
with replication than without.

Increasing the number of clusters increased the access times, but replica-
tion gave still a more constant access time than no replication. Also the size
of accessed portions of the files and the cluster locality were varied in the
simulation. The results for these simulations also showed better performance
than a non-replicated system in most cases.

Finally the different consistency and locating algorithms were studied. Of
the consistency algorithms immediate update performed best at low work-
loads but worst at high loads while invalidation and partial update showed
quite similar performances, with partial update slightly better. The locating
algorithms were all very similar in performance.

D.11 HA-NFS

HA-NFS |2| stands for Highly Available Network File Server. It is based on
NFS and implements NFS semantics. It was run on AIX version 3. HA-NFS
increases availability through implicit replication.



100

In HA-NFS two different servers get access to the same string of SCSI
disks. One server acts as primary and the other as backup. In normal
operation only the primary has access to the disks. If the primary fails, the
secondary will take over its IP address and the disks and thus impersonate
the primary. The servers have two network interfaces, since they act as
primary for one set of files and secondary for another and may thus need
two network addresses.

If two networks are available the replication can be extended to include
networks. The primary and secondary servers will be on different networks.
If a client looses contact with a server it contacts the backup which will then
impersonate the primary.

ATXv3 supports disk mirroring to give the impression of failsafe disks.
This in combination with higher server and network availability increases
availability during failures. The cost is slightly slower reads and clearly
slower writes (with mirroring) than for standard NFS. The operating system
and hardware dependent nature of HA-NFS makes it quite inflexible and
thus not so interesting for this work.
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