~

STACKPONNTER

3-1987. Organ f6r Datorféreningen STACKEN, KTH.

TORSDAG

7

MAJ

Macafton i sal E7
klockan 1900.

’ MANDAG

‘ SONDAG 8
g 7 JUNI
6 JUNI ;%‘:L:?nggsskrz g;)

:6ping.

liskt hogskole-

JUNI rféreningsmote
<Oping.

Nordiskt hogskole-
datorféreningsmote
i Linkdping.

2 STACKPOINTER 3-1987

Datorforeningen STACKEN

PN)| TACKEN ér datorforeningen pa
0 KTH. Vi har en mingd intres-
S santa verksamheter pid ging.
Dock hiinger det ytterst p& den enskilde
medlemmen att avgéra vad han eller
hon vill gora f6r foreningen. STACKEN
ir en ideell forening, dir intresse for
datorer dr den gemensamma faktorn.
Sedan féreningen grundades 1978 har
vi (bland annat) 4stadkommit:

— samkop av mikrodatorbyggsatser

— kurser, foredrag och studiebesok

— AMIS, den portabla EMACS-kom-
patibla editorn f6r TOPS-10, VMS,
PRIME, NORD, ...

— STACKPOINTER, vér tidning

— en egen datorhall for vir DEC-10
och véra andra stordatorer

Sedan ett och ett halvt 4r har vi en
egen DEC-10, som vi installerat, fel-
sokt och kor pd. Det 4r en gammal
modell med KA10-processor. Vi kallar
henne KATIA. Hon stir i var maskin-
hall "B30”, p4 Brinellvigen 30 (V-sek-
tionen) p4 gaveln mot Lill-Jansskog-
en (dér vi har en egen ingdng). En va-
ning ovanfér finns en hérsal (V4), dir
vi héller till vid storre méten.

Ordinarie méten dr forsta torsdag i
varje manad, kl 19, vid datorhallen eller
i hérsalen. Ar Du intresserad av foren-
ingen, 4r Du vilkommen till nigot av
véra moten. Vill Du sedan bli medlem,
limnar Du en skriftlig ans6kan till sty-
relsen eller skickar den till vir postad-
Iess.

STACKPOINTER

TACKPOINTER &r organ for
) { Datorféreningen STACKEN pd
S=) KTH. Den utkommer nir ma-
terial i tillrdcklig méngd finns, férhopp-
ningsvis 4-5 génger per 4r. Atergivan-
de av delar av innehéllet &r tilldtet ndr
kéllan anges.

Redaktor: Hans Nordstrom

I redaktionen: Jan Michael Rynning
och Mats O Jansson

Tillika ansvarig utgivare: Mats O Jans-
son

Férdigstilld: 1987-04-23

STACKPOINTER 3-1987 3

I detta nummer

Macaftonooviiiinn... 5
STACKEN ordnar Macintoshafton i
E7 torsdagen den 7 maj klockan 19.

Nordiskt datorforeningsmote. 6
STACKEN och CD ordnar nordiskt
hdgskoledatorforeningsméte i Lin-
k&ping i pingst (6-8 juni).

GNU’sBulletin#2 10

GNU’s Task Listvuu..... 22
Lista over de mest angelédgna arbets-
uppgifterna i GNU-projektet. Finns
ddr ndgot du kan hjilpa till med?

RMS foredrag 1986............ 24
Foredraget som Richard M. Stall-
man holl nér han besckte KTH.

Bruksanvisning 60

Adresser m m

Datorféreningen STACKEN
C/o NADA

KTH

100 44 STOCKHOLM

Medlemsavgift: 87 kronor fér 1987

Ordf: Stellan Lagerstrm {0g . 6195 o)

Sekr: Olle Betzén {0758-3(1,5 Bpem
Kass: Mats O Jansson {gs7117.31 o
Red: Hans Nordstrom {©760-61580 (arb)
Hexm: Henrik Bjorkman 0{80% 98001 e
. i - arl
Suppl: Henning Croona {5739 1740 (herm)

" s 08-712 00 90 (arb)
Suppl: Thord Nilson {74521 92 (hern

Postgiro: 433 01 15-9
Bankgiro: 344-3595

Klubblokal: Osquars Backe 4 (ingdng frin valvet, Osquars Backe 1)
Datorhall: Brinellvéigen 32 (p4 gaveln mot Lill-Jansskogen)

SUNET DECnet: STACKEN@VERA (VMSmail: VERA::STACKEN)

UUCEP: {seismo,mcvax }!enea!ttds!stacken

EAN: stacken@cs.kth.sunet

PSI: PS1%0240200101905::VERA::STACKEN
ARPA: enealttds!stacken@seismo.CSS.GOV
CSnet: enea.uucp!ttds!stacken@chalmers.csnet

4 STACKPOINTER 3-1987

Redaktorn

| presskonferens och presente-
rade sin nya produktlinje av
persondatorer. Nu blev det klart att
det skall vara 3,5”-disketter framéover.
Vill man anvénda 5 1/4”-disketter si
finns det givetvis att képa som tillbehér.
Till de laserskrivare som ocks4 lanse-
rades kommer sidbeskrivningsspraket
POSTSCRIPT att anvéndas. En reak-
tion som noterades dagen efter pé Wall
Street var att Apples aktier gick upp
7%. Aven Tandy och Compaq kunde
glddja sig &t stigande aktiekurs. Hur
gick det di med I*M-aktien? Den foll
med 2%!

S4& kan det ga.

En kvill hirforleden stannade jag
kvar pd arbetet. (Overtid kallas det.)

Lite p-oblem med den ménskliga fak-
torn och systemen. Sitter allts§ vid ter-
minalen och glaner pd programkoden.
Jag blev lite forsjunken i hur det hela
fungerade. Vaknar upp (ni, jag sov
inte) vid att jag hor stidderskan komma
sldpande pd dammsugaren i korridoren.
Innan jag reagerade s& stoppade hon
stickkontakten i urtaget, didr firmans
Mac ocksd var ansluten och iging
med dammsugaren. Mycket forsiktigt
ndrmade jag mig Macen. Jod4, det var
inga problem med den.

Hur méinga startar dammsugaren
frén samma artag som datorn #r anslu-
ten till?

Ja, det var det hele.

lhn

Har kommer tet som
toll bort i forra utgdvan

lhn

STACKPOINTER 3-1987

n

Macafton

] ORSDAGEN DEN 7 MAJ KL.
{ 1900 blir det tréff i sal E7.
‘ Kvillen kommer att vara in-
fluerad av Apple Macintosh. Leksaks-
datorn som har vuxit till sig.

Under forsta kvartalet 1984 kom
forsta versionen med 128Kb, enkel-
sidiga 400Kb disketter och nistan inga
program. Féljande &r vixte den lite
till och fick 512Kb, mera program
och séllskap av LaserWriter. Forra &ret
kom Mac Plus med 1Mb, dubbelsidiga
800Kb disketter och #dven en Laser-

Writer Plus. I borjan av mars i 4r
kom s& den 6ppna Mac II med stora
utbyggnadsmaojligheter.

Med under kvillen kommer att vara
folk frin svenska Apple. De har 3 st
Mac II. En av dessa dr trasig. P& Apple
vet de inte om de kan laga felet. Men
OM de klarar av det s kommer den att

visas upp under kvillen.

Alla dr vilkomna.

/hn

Unix

T ARK CRISPIN, Tops-20-pro-
Al grammerare vid Stanford, som
dven har en DEC-2020 hemma
i ett ombyggt sovrum, Rainbow Suite,
har skaffat sig hund av ndgot fint slag.
For mig &r en hund en hund, s& jag har
glomt vad det var for modell. N4, hun-
den skulle ju heta ndgot och i ett hem
ddr man fir uppmaningar typ “Ring
mig, om jag inte 4r hemma kan min fru
hjélpa till med enklare saker som band-
monteringar etc...” méiste ju husdjuret

ha ett med datorer férknippat namn.

"'Vi provade med allt méjligt trevligt
som, Tenex, Jsys, UUO, Tops-20, Tops-
10, Midas... men djuret reagerade inte.
En dag rdkade ndgon av misstag kalla
den f6r Unix och den for runt, runt och
verkade lystra till det. S& den stackars
arma kraken gir numera under namnet
Unix.”

Peter Lithberg

6 STACKPOINTER 3-1987

Nordiskt hogskole-
datorforeningsmote
1 LinkOping 1987.

Y HALMERS DATORFORENING OCH DATORFORENINGEN STACKEN PA
\| KTH har beslutat att ordna ett méte mellan datorféreningarna vid hogsko-
22 lorna i de nordiska ldnderna. Mtet kommer att avhallas i Link&ping under
pmgsthc]gcn 16rdag 6:e-méndag 8:e juni 1987.

Planerade aktiviteter.

Lérdag 6:e juni (pingstafton och svenska flaggans dag):

Férmiddag: Ankomst till Link&ping.
Eftermiddag: Studiebestk pa foretag/institutioner.
Kvill: Gemensam kvéllsmat.

Foreningspresentationer.

Sondag 7:e juni (pingstdagen):

Formiddag:- Redaktionsarbete p4 gemensam tidning.
Diskussioner om forhéllande till respektive hogskolor, resurs-
er, tiggeriverksamhet m.m.
Bildande av samarbetsorganisation.

Mitt p& dagen: Gemensam lunch.
Eftermiddag: Lekar och spel.

‘ Presskonferens.
Kvill: Bankett.

Mandag 8:e juni (annandag pingst):
Formiddag: Foredrag (foreningsprojekt m.m.).
Eftermiddag: Avfird fran Linkoping.

STACKPOINTER 3-1987 7

Fragor och anmilan.

Chalmers DatorfSrening besvarar frigor och tar emot anmalningar.

Telefon: 031-811727
Adress: Chalmers Datorférening
412 96 Goteborg
SUNET DECnet: TEKNO1::F01841467
UUCP: cd-cd@gustaf. CS.CHALMERS.SE

...enealchalmers!cd3200!xt
matte@chalmers.CS.CHALMERS.SE

Motesplanering.

Konferenssystemet KOM pé datorn Kicki i Stockholm anvinds for planering av
motet. '

8 STACKPOINTER 3-1987

Nordic University
Computer Club Conference

in LinkOping 1987.

URING the Whitsuntide, Saturday 6-Monday 8 June, the Chalmers Com-
| puter Society (at the Chalmers University of Technology in Gothenburg,
| ,_;Z) Sweden) and the STACKEN Computer Club (at the Royal Institute of Tech-
nology in Stockholm, Sweden) will arrange a joint meeting in Link&ping, with par-
ticipants from the computer clubs at the Nordic universities.

Preliminary programme.

Saturday 6 June (Whitsun Eve):

Morning: Participants arrive in Link6ping.
Afternoon: Visits to companies/institutions.
Evening: Joint dinner.

Presentations of the clubs.

Sunday 7 June (Whit Sunday):

Morning: Editorial work on joint newsletter.
Discussions on the relations to the schools, resources available
to the clubs, etc.

Noon: Joint lunch. -
Afternoon: Games and competitions.

' Press conference.
Evening: Banquet.

Monday 8 June (Whit Monday):
Moming: Seminars (project presentations, etc.).
Afternoon: Participants leave.

STACKPOINTER 3-1987 9

Questions and registration.

Questions and registration will be handled by the Chalmers Computer Club.

Telephone: +46 31 811727
Address: Chalmers Datorf6rening
S-412 96 Goteborg
Sweden
UUCP: cd-cd@gustaf.CS.CHALMERS.SE

...{seismo,mcvax}'enea!chalmers!cd3200!xt
matte@chalmers.CS.CHALMERS.SE

Conference planning.

The KOM teleconferencing system on the Kicki computer in Stockholm will be
used for planning the conference. The discussions will probably be held in Scandi-
navian.

10

STACKPOINTER 3-1987

Contents

Gpu's Who

What is the Free Software Foundation?
GNU Project Status

GNU Software Available Now

How To Get GNU Software

Emacs version 18 improvements

GNU Wish List

Free Software Foundation Order Form
Thank Gnus

STACKPOINTER 3-1987 11

Gnu's Who

In the first Bulletin there was a piece Gnu's Zoo telling of the
various people working on Project Gnu and connecting them with an
appropriate animal. Matching menageries of people to menageries of
animals gets increasingly hard to do. So I have settled for
presenting just the biography without the bestiary.

Paul Rubin started working for the Foundation full time this summer
and is now helping us again in January. During the school year he
studies mathematics at UC Berkeley. He's written a number of GNU
utilities including the C Compatible Compiler Preprocessor (CCCP),
worked on getting the printed Emacs manuals made, and is now
developing kernel maintenance tools for TRIX. He likes jazz and
classical music and hates cats.

hack (Jay Fenlason) joined project GHU full time this fall. Jay is
finishing the awk program started by Paul Rubin. Jay says of himself:

"I've been a UNIX hacker since high school, I wrote the original
version of Hack, and various obscure utilities. I'm most famous for
my work on various Logo interpreters, including LSRHS/Childrens Museun
logo, and TLC logo for the Commodore Amiga. When I'm not hacking, I
read, write poetry, and play role-playing games."

Diane Wells has been helping all summer and fall and winter,
answering the mail and filling orders.

Stephen Gildea redesigned the Emacs reference card for version 18.
The new reference card source uses TeX instead of a proprietary
formatting program.

Pierre MacKay typeset the masters that the Emacs manual
pages were shot from on his high quality phototypesetter.

GNU'S BULLETIN Copyright January 1987
by the Free Software Foundation.

Editor: Jerome E Puzo
Asst. Editor Paul Rubin

Permission is granted to anyone to make or distribute verbatinm
copies of this document as received, in any medium, provided that
the copyright notice and permission notice are preserved, and
that the distributor grants the recipient permission for further
redistribution as permitted by this notice

12

STACKPOINTER 3-1987

What is the Free Software Foundation?
by Richard M. Stallman

The Free Software Foundation is dedicated to eliminating restrictions
on copying, redistribution, understanding and modification of software

The word "free" in our name does not refer to price; it refers to
freedom. First, the freedom to copy a program and redistribute it to
your neighbors, so that they can use it as well as you. Second, the
freedom to change a program, so that you can control it instead of 1t
controlling you; for this, the source code must be made available to
you.

The Foundation works to give you these freedoms by developing free
compatible replacements for proprietary software. Specifically, we
are putting together a complete, integrated software system "GNU" that
is upward-compatible with Unix. When it is released, everyone will be
permitted to copy it and distribute it to others; in addition, it will
be distributed with source code, so you will be able to learn about
operating systems by reading it, to port it to your own machine, to
ipprove it, and to exchange the changes with others.

There are already organizations that distribute free CPM and MSDOS
software. The Free Software Foundation is doing something different.

1. The other organizations exist primarily for distribution; they
distribute whatever happens to be available. We hope to provide a
complete integrated free system that will eliminate the need for any
proprietary software.

2 One consequence is that we are now interested only in software
that fits well into the context of the GNU systenm Distributing
free MSDOS or Macintosh software is a useful activity, but it is
not part of our game plan.

3. Another consequence is that we will actively attempt to improve and
extend the software we distribute, as fast a8 our manpower peraits

For this reason, we will always be seeking donations of money,
computer equipment or time, labor, and source code to improve the GNU
system.

4 In fact, our primary purpose is this software development effort,
distribution is just an adjunct which also brings i1n some money We
think that the users will do most of the distribution on their own,
without needing or wanting our help

Why a Unix-Like System?

It is necessary to be compatible with some widely used system to give
our system an immediate base of trained users who could switch to 1t
easily and an 1mmediate base of application software that can run on
1t (Eventually we will provide free replacements for proprietary
application software as well, but that 15 some years in the future)

[cont'd on next page)

STACKPOINTER 3-1987

We chose Unix because it is a fairly clean design which is already
known to be portable, yet whose popularity is still rising The
disadvantages of Unix seem to be things we can fix without removing
what is good in Unix.

Why not imitate MSDOS or CPM? They are more widely used, true, but
they are also very weak systems, designed for tiny machines. Unix is
much more powerful and interesting. When a system takes years to
implement, it is important to write it for the machines that will
become available in the future; not to let it be limited by the
capabilities of the machines that are in widest use at the moment but
w1ll be obsolete when the new system is finished.

Why not aim for a new, more advanced system, such as a Lisp Machine?
Mainly because that is still more of a research effort; there is a
sizeable chance that the wrong choices will be made and the system
will turn out not very good. In addition, such systems are often tied
to special hardware. Being tied to one manufacturer's machine would
make it hard to remain independent of that manufacturer and get broad
community support. ’

Status of the GNU project, last updated 3 January 1087.
by RMS

(See also the article "GNU Software Available How", on page 6 of this
issue).

* GNU Emacs and GDB.

GNU Emacs and GDB are already released. Berkeley is distributing GNU
Emacs with the 4.3 distribution, and DEC is going to distribute it with
Unix systems on Vaxes.

» gsh, the GNU imitation C shell.

Beta-test release of a C shell with input editing and
compilation of shell scripts is expected at the end of January.

The same program is supposed to imitate sh, but that doesn’'t work yet.
+ Kernel.

1 am planning to use a remote procedure call kernel called TRIX,
developed at MIT, as the GNU kernel. It runs, and supports basic
Unix compatibility, but needs a lot of new features Its authors
have decided to distribute it free. It was developed on an obscure,

expensive 8B000 box designed years ago at MIT.

In December 1986, we started working on the changes needed to TRIX.

[cont*d)

14

STACKPOINTER 3-1987

January 1987 GHNU"S BULLETTII Volume 1 llo.2

~ C compiler

I an now working on finishing a new portable optimizing C compiler.
It supports the Oct 1986 draft of ANSI C and has compiled both
itself and GlU Emacs. However, I Plan to make some rearrangements
in order to enable compilation of arbitrarily large functions in
bounded amounts of memory, though with some decrease in optimization
compared to what can be done with lots of memory.

The compiler performs automatic register allocation, common
subexpression elimination, invariant code motion from loops, constant
propagation and copy propagation, delaying popping of function call
arguments, plus many local optimizations that are automatically
deduced from the machine description. By the time 1t is finished it
will probably also know when to keep constant addresses in registers

It makes shorter and faster 68020 code than the sun compiler with -0.

A new cpp was written last summer. It is as fast as the Unix CPp-
PHR is now making it support the Oct 1986 standard. .

* Assembler
An assembler has been written. It works well on Vaxes but proves to
be harder to port than I had hoped, so some rewriting is needed to

simplify the interface between the machine-dependent portions and the
machine-independent ones.

* Window systen.

I plan to use the X window system written at MIT. This system
is already available free

* Documentation system

I now have a truly compatible pair of programs which can convert
a file of texinfo format documentation into either a printed manual
or an Info file.

Documentation files are needed for many utilities.

+ Stdio
A free stdio system has just been received

+ Other utilities.

The GNU ‘ls', ‘grep’'., ‘make’ and '1d' are 1in regular use “tar!
recently appeared on USENET net sources The other object-file
management utilities are written too ‘cron’ and ‘at' were recently
submitted, and so was ‘m4’ The assembler works for the Vax, but
proves to be hard to port, so 1t may need considerable rewriting

‘awk’' is now 1n final testing stages ‘diff’ 1s making progress We
have a program like "lex’ but not fully compatible, work 1s required
on 1t

lcontinued on page 8)

STACKPOINTER 3-1987

January 1987 Gnvuv:'s BULLETIUN Volume 1 llo.2

GNU Software Available How

* GNU Emacs

In 1975, Richard Stallean developed the first Emacs: the

extensible, customizable real-time display editor. GNU Emacs is

his second implementation of Emacs. It’'s the first Emacs available
on Unix systems which offers true Lisp, smoothly integrated into the
editor, for writing extensions It also provides a special interface
to MIT's free X window system, which makes redisplay very fast.

GNU Emacs has been in widespread use since 1985 and often, as at
MIT's Project Athena, displaces proprietary implementations of Emacs
because of its greater reliability as well as its good features

and easier extensibility.

GNU Emacs has run on many kinds of Unix systems: those made by Alliant
(system release 1 or 2), AT&T (3b machines and 7300 pc), Celerity,
Digital (Vax, not PDP-11), Dual, Encore, Gould, HP (9000 series 200 or
300 but not series 500), IBM (RT/PC running 4.2), Integrated Solutions
(Optimum V with 68020 and VMEbus), Masscomp, Megatest, NCR (Tower 32),
Plexus, Pyramid, Sequent, Stride (system release 2), Sun (any kind),
Tahoe, Tektronix (NS16000 system), Texas Instruments (Nu), Whitechapel
(MG1), and Wicat. These include both Berkeley Unix and System V
(release 0, 2 or 2.2). It also runs on Apollo machines and on
VAX/VMS.

GNU Emacs use is described by the GNU Emacs Manual, available from
the Free Software Foundation.

*+ GDB

GDB is the source-level C debugger written for the GNU project in 1986.

It offers many features not usually found in debuggers on Unix, such
as a history that records all values examined within the debugger for
concise later reference, multi-line user-defined commands, and a
strong self-documentation capability. It currently runs on Vaxes

and Suns (systems version 2 and 3).

A users’' manual for GDB is available from the Foundation

* GNU CC

’
The GHU C compiler is a fairly portable optimizing compiler It
generates good 68000 and 68020 code and generated good Vax code when
it was last tested for the Vax. It features automatic register
packing that makes register declarations unnecessary It supports
full ANSI C as of the latest draft standard. We expect to release the
compiler in 1st quarter 1987.

* Bison
Bisor 1s an upward-compatible replacement for YACC, with some

additional undocumented features It has been i1n use for a couple
of years

[Cont'd]

16

STACKPOIN’I'ERA3-I987

* X Window System

X is a portable, network transparent window system for bitmap displays
written at MIT and DEC. It currently runs on DEC VAXstation, Lexidata
90, and most Sun Microsystems displays, with others in the works. X
suppcrts overlapping windows, fully recursive subwindows, and provides
hooks for several different styles of user interface. Applications
provided include a terminal emulator, bitmap editor, several window
managers, clock, window dump and undump progranms, hardcopy printing
program for the LNO3 printer, several typesetting previewers, and more.

¢ MIT Schenme

Scheme is a simplified, lexically scoped dialect of Lisp, designed at
MIT and other universities for two purposes: teaching students of
programming. and researching new parallel programming constructs

and compilation techniques. MIT Scheme is written in C and runs on
many kinds of Unix systems. .

Sorry, there is no documentation for the current distribution version
of MIT Scheme. A new standard for Scheme has been designed by the
various labs that work on Scheme, and work is going on at MIT to
change MIT Scheme to fit. Once that is done, the standard will serve
as a manual for MIT Scheme. At that time, we will distribute both the
new release of Scheme and the standard. -

* GNU Chess

GNU Chess was written in 1086 by Stuart Cracraft, who is continuing to
develop it. It comes with an interface to the X window system to
display a pretty chessboard. It also has an opening book which is
being added to all the time.

« Hack

Hack is a display oriented adventure game similar to Rogue.

HOw TO GET GNU SOFTWARE

All software and publications are distributed with a permission to
copy and redistribute. The easiest way to get a copy of GliU Software
is from someone else who has it. You need not ask for permission,
just copy it.

If you have access to the Internet, you can get the latest
distribution version of GNU Software from host: ‘prep a1 .mit.edu’
For more info read. '/u2/emacs/GETTING GHU.SOFTWARE' on said host

If you cannot get a copy in any of these ways, you can order one from
the Free Software Foundation Please consult the accompanying Order
Form for prices and details

STACKPOINTER 3-1987 17

GHU PROJECT STATUS, continued from page 5

+ Free Software Foundation.

The foundation exists for two purposes: to accept gifts to
support GNU development, and to carry out distribution.

We are now tax exempt; you can deduct donations to us

on your tax returns.

Our address is

Free Software Foundation

1000 Mass Ave

Cambridge, MA 02138
and our phone number is (617) 876-3296.
* Service directory.
The foundation now maintains a Service Directory; a list of people
who offer service to individual users of GNU Emacs and, eventually,
all parts of the GHU system. Service can be answering questions

for new users, customizing programs, porting to new systems, or
anything else.

* Possible target machines.

GNU will require a cpu that uses 32-bit addresses and integers and

‘addresses to the 8-bit byte. 1 meg of core should be enough, though 2

meg would probably make a noticeable improvement in performance.
Running much of the system in 1/2 meg may be possible, but certainly
not GHU Emacs. I do not expect that virtual memory will be required,
but it is VERY desirable in any case.

GNU Emacs requires more than a meg of addressable memory in the system,
although a meg of physical memory is probably enough if there is
virtual memory.

A. hard disk will be essential; at least 20 meg will be needed to hold
the system plus the source code plus the manual plus swapping space.
Plus more space for the user's files, of course.

1'd recommend BOmeg for a personal GNU system.

This is not to say that it will be impossible to ‘adapt some or all
of GNU for other kinds of machines; but 1t may be difficult, and
I don't consider it part of my job to try to reduce that difficulty.

1 have nothing to say about any specific models of microcomputer,
as 1 do not follow hardware products.

+ Porting.

It is too early to inquire about porting GNU (except GNU Emacs).
First, we have to finish it

STACKPOINTER 3-1987

January 1987 GHuv*"s BULLETIUN Volume 1 llo 2

Emacs 18 runs on Vax VMS.
* GNU Emacs now runs on Vax VMS.
* Searching is several times faster.

* Running out of memory is never fatal.
Memory usage for strings is cut in half by a new garbage collector

* GNU Emacs can enmulate other editors: EDT, VI, Gosmacs

*« Hew major modes for LaTeX, Fortran, Scribe, Modula2 and Prolog

* Terminal-independent function keys.

The first, terminal-dependent level converts a terminal's function key
codes into standard codes. The second level maps these into commands
Users can customize the second level and enjoy the same results
automatically on all terminal types.

* All C-c LETTER keys are reserved for users. Such commands
previously defined by Mail mode, Picture mode and Telnet mode have
been moved.

* New Commands

** Buffer-sorting commands.

Various new commands sort the lines, paragraphs or pages in the
region; they can also sort lines according to fields or columns

** ‘occur’ output now serves as a menu.
'M-x occur' now allows you to move quickly to any of the occurrences
listed. To do this, select the ‘*Dccur*’ buffer that contains the

output of ‘occur’, move point to the occurrence you want, and type C-c
C-c

** Meta-TAB performs completion on the Emacs Lisp symbol name in the buffer
*+ Dynamic abbreviation package.

The new command Meta-/ expands an abbreviation in the buffer before point
by searching the buffer for words that start with the abbreviation

** 'c-tab-always-indent’' parameter tells TAB in C mode to insert a
tab character when used in the middle of a line
*¢ Outline mode is customizable

You can now specify with a regexp which lines are outline headings
Lines that separate pages are always considered headings

¢ File saving changes
Undo says "not modified” only when the buffer matches the disk f1le

[cont’d on next page]

STACKPOINTER 3-1987

*++ Auto save file name now has ‘#' at end.)
For a file 'foo’', the auto save file is now called ‘#foo¥#'. This is
80 that “*.c’ in a shell command will never match auto save files.

*++ M-x recover-file checks file dates.

M-x recover-file is used to recover a file's contents from its auto
save file. Now this command checks the date of the auto save file
and offers to recover from it only if it is newer.

#* Modifying a buffer whose file is changed on disk is detected instantly.
Thus, you are warned that something is wrong before you go ahead and

create a skewed version of the file.

*+ Exiting Emacs offeras to save ‘#mail+’.

++ M-x ftp-find-file and M-x ftp-write-file read and write files via Internet.

*+ Precious files. If you mark a buffer “"precious”, Emacs will save
it by renaming so that there is no time between the disappearance of

the old file and the appearance of the new one. This is used for RMAIL files.

* Existing Emacs usable as a server for ‘mail’', etc.
Programs that invoke a user-specified editor as a temporary inferior
can now be told to use an existing Emacs process instead.

+ M-x disassemble disassembles byte-compiled Emacs Lisp functions.

s+ ‘substitute-key-definition’' finds all keys defined as one command
and redefines them all as another command.

+ New hooks for file I/0.

You can set up multiple hooks for finding and saving files. These can
arrange automatically to get files via RCS, uncompression, ftp, etc.

* New data structure controls mode line format.

Now it is possible to change one aspect of what appears in the mode line
independently of what is being done with the rest of the mode line.

GNU Wish List

The GHU project can always use donations of money or equipment.
Specifically, we could use:

*+ Salary for two more full time programers.
+ A computer powerful enough to develop the GNU kernel on. This means
a 68xxx/32xxx class processor with several meg of main memory and

an 80 meg disk.

+ Local volunteers to help mail tapes and manuals to our clients, and
answer mail. We need about 10 person-hours/week of help doing this.

+ Dedicated people, with C and Unix knowledge, especially those with

a local (Cambridge and surrounds) address, to write programs and
documentation. Ask for our task list 1f you want to help.

-10-

STACKPOINTER 3-1987

Free Software Foundation Order Form
January 1987

All software and publications are distributed with permission to copy
and redistribute.

Quantity Price

$160 GNU Emacs source code, on 1600bpi industry standard
magnetic tape in tar format. The tape also contains
Scheme, Hack, Bison, GNU Chess, GDB, and the X window
system.

$175 Same data as above, on a DC300XL 1/4" cartridge tape.

$160 GNU Emacs source code, on 1600bpi industry standard
magnetic tape in VMS interchange format.

_______ $15 GNU Emacs manual. This includes a reference card.
The source for this manual also comes with the tape.
(~300 :pages)

Thus, one 1600bpi tlpi and one manual come to $166.

_______ $60 Box of six GNU Emacs manuals, shipped book rate.
_______ $1 GNU Emacs reference card.
....... $6 Ten GNU Emacs reference cards.

$10 GDB manual. The source for this manual also comes

with the source for GDB. ("60 pages)

$10 TeXinfo manual. The source for this manual also comes
with the Emacs source. (730 pages)

| S B% Massachusetts sales tax, if applicable.
. Optional tax deductable donation
S Total amount enclosed

Shipping outside of North America is normally by surface mail, which is
very slow. For air mail delivery, please add $15 per tape or manual,
$1 for an individual reference card, or 50 cents per card in
quantities of 10 or more.

Orders are filled upon receipt of check or money order. We do not
have the staff to handle the billing of unpaid orders. Please help
keep our lives simple by including your payment with your order Make
checks payable to the Free Software Foundation, and mail orders to:

Free Software Foundation phone: (617) 876-3296
1000 Massachusetts Avenue
Cambridge, MA 02138

Prices are subject to change without notice. All software from the
Free Software Foundation is provided on an '‘as 1s'’ basis, with no
warranty of any kind

STACKPOINTER 3-1987

Thank Gnus

The Free Software Foundation would like to send special thank gaus to
the following:

Thanks to Stacy Goldstein. Stacy answered the mail and filled orders
for FSF. Her efforts got us thru a very busy season. She then left
to continue her studies in Hawaii which she claims "is as good as they

say”
Thanks to Todd Cooper and Henry Mensch. They also helped out 1n the

pail room.

Thanks to the MIT Laboratory for Computer Science. The LCS has
provided FSF with the loan of a TI Nu machine and a Microvax for
program development.

Thanks to Professor Dertouzos, head of LCS. His specific decision to
support us is greatly appreciated.

Thanks to the MIT Artificial Intelligence Laboratory for invaluable
assistance of many kinds.

Thanks to Lisp Machine, Inc. LMI has generously provided office space,

computer resources and a mailing address for FSF.

Thanks to the European Unix Users’ Group of Sweden and the Swedish
Royal Institute of Technology for their generous donations.

Thanks to those who sent money and offered help. Thanks also to those
who support us by ordering Emacs manuals and distribution tapes.

The creation of this bulletin is our way of thanking all who have
expressed interest in what we are doing.

end

|
Free Software Foundation, Inc. | stamp |

1000 Mass Ave |
Cambridge, MA 02138 | here |
|

21

22 STACKPOINTER 3-1987

GNU task list

fyl NU task list, last updated 11
il February, 1987.

0. Documentation

We very urgently need documenta-
tion for some parts of the system that
already exist or will exist very soon:

— A Creference manual.

— A GNU Emacs Lisp programming
manual. (There is a team working on
this, but they need more people to
write chapters).

— A Yacc manual.

— A SH manual.

— A stdio manual.

Reference cards for various pro-
grams (and texinfo has been sug-
gested).

1. Imitations of standard parts of
Unix:

dbm, diction, diff3, explain, graph,
join, lint, more, plot, mt, sdiff, style, tip

We have something like lex, but it is
not fully compatible with Unix lex. It

needs to be fixed.

kwik indexer.

nroff/troff, eqn, tbl, and standard
macro packages. Probably the equiva-
lent of troff should output dvi files (TgX
output files). Part of this has already
been written.

Finish an incomplete vi clone.

Finish an incomplete implementa-
tion of diff.

An imitation of uucp. Specs for the
uucp communication protocol were re-
cently published; we can send you a
copy. A free “uuslave” program has
been written by John Gilmore.

Mostly machine independent float-
ing point print routines. This isn’t as
hard as it sounds; talk to me about it.
This is important.

A variant of the regex library that
uses finite state machine algorithms (&
la egrep) rather than backtracking. This
is important.

A mail-delivery system (replacing
sendmail). It does not need to have all
the hair that sendmail has. Please speak
to me about the details if you are inter-
ested.

STACKPOINTER 3-1987 23

2. GNU-specific projects:

info, a program for perusing node-
structured documentation files, equiva-
lent to M-x info in GNU Emacs but not
dependent on GNU Emacs.

texinfo, a program for convert-
ing texinfo format files into node-
structured info files, equivalent to M-
x texinfo-format-buffer in GNU Emacs
but not dependent on GNU Emacs.

3. Other random projects:

— An imitation of dbase2 or dbase3
(How dbased!)

— An imitation of Page Maker.

— paint and draw programs for the X
window system.

— A music playing and editing system.

— A postscript interpreter that can out-
put pictures to screens (using X) and
to printers.

" — A Forth system.

— A Smalltalk system.

— A Prolog interpreter and compiler.

— A Logo system. (We have one that
you can start with, but certain parts
of it are poorly written and must be
replaced.)

Note that graphics programs should
be written to work with the X window
system, a free portable window system
from MIT and DEC that we will be us-
ing.

4. Compilers for other batch lan-
guages.

These cannot be worked on until the
C compiler is released, but that is ex-
pected in a few months. At that time
it will be possible for people to write
parsers/front ends for other languages
such as Fortran, Pascal, Algol 60, Algol
68, Modula, PL/I, Ada, or whatever.

Likewise, it will be possible to adapt
the C front end as a lint; preferably not
as stupidly stubborn as the Unix lint.

5. Games.

— Empire

— Adventure

— Backgammon

— imitations of your favorite video
games

We do not need rogue, as we have
hack.

24 STACKPOINTER 3-1987

RMS Lecture at the RIT
30 October 1986

[Richard M. Stallman gave this lec-
ture on 30 October 1986 at the Royal
Institute of Technology in Stockholm,
Sweden, at a meeting arranged by the
STACKEN Computer Club and attended
by more than 200 persons.

Hans Nordstrém recorded the speech
on tape, and Bjgrn Remseth later wrote
it down.

Note: This is a sligthly edited tran-
script of the talk. As such it contains
false starts, as well as locutions that
are natural in spoken English but look
strange in print. It is not clear how
to correct them to written English style
without ‘doing violence to the original
speech’.]

It seems that there are three things
that people would like me to talk about.
On the one hand I thought that the best
thing to talk about here for a club of
hackers, was what it was like at the MIT
in the old days. What made the Ar-
tificial Intelligence Lab such a special
place. But people tell me also that since
these are totally different people from
the ones who were at the conference
Monday and Tuesday that I ought to
talk about what’s going on in the GNU

project and that I should talk about why
software and information can not be
owned, which means three talks in all,
and since two of those subjects each
took an hour it means we’re in for a
rather long time. So I had the idea
that perhaps I could split it in to three
parts, and people could go outside for
the parts they are not interested in, and
that then when I come to the end of a
part I can say it’s the end and people can
go out and I can send Jan Rynning out
to bring in the other people. (Someone
else says: “Janne, han trenger ingen
mike” (translation: “Janne, he doesn’t
need a mike”)). Jan, are you prepared
to go running out to fetch the other peo-
ple? Jmr: I am looking for a micro-
phone, and someone tells me it is inside
this locked box. Rms: Now in the old
days at the AI lab we would have taken
a sledgehammer and cracked it open,
and the broken door would be a lesson
to whoever had dared to lock up some-
thing that people needed to use. Luck-
ily however I used to study Bulgarian
singing, so I have no trouble managing
without a microphone.

Anyway, should I set up this system
to notify you about the parts of the talk,
or do You just like to sit through all of

STACKPOINTER 3-1987 25

it? (Answer: Yeaaah)

When I started programming, it was
1969, and I did it in an IBM labora-
tory in New York. After that I went to
a school with a computer science de-
partment that was probably like most
of them. There were some professors
that were in charge of what was sup-
posed to be done, and there were peo-
ple who decided who could use what.
There was a shortage of terminals for
most people, but a lot of the professors
had terminals of their own in their of-
fices, which was wasteful, but typical
of their attitude. When I visited the Ar-
tificial Intelligence lab at MIT I found
a spirit that was refreshingly different
from that. For example: there, the ter-
minals was thought of as belonging to
everyone, and professors locked them
up in their offices on pain of finding
their doors broken down. I was actu-
ally shown a cart with a big block of
iron on it, that had been used to break
down the door of one professors office,
when he had the gall to lock up a termi-
nal. There were very few terminals in
those days, there was probably some-
thing like five display terminals for the
system, so if one of them was locked
up, it was a considerable disaster.

In the years that followed I was in-
spired by that ideas, and many times
I would climb over ceilings or under-
neath floors to unlock roooms that had
machines in them that people needed
to use, and I would usually leave be-
hind a note explaining to the people

that they shouldn’t be so selfish as
to lock the door. The people who
locked the door were basically consid-
ering only themselves. They had a
reason of course, there was something
they thought might get stolen and they
wanted to lock it up, but they didn’t
care about the other people were af-
fecting by locking up other things in
the same room. Almost every time this
happened, once I brought it to their at-
tention, that it was not up to them alone
whether that room should be locked,
they were able to find a compromise
solution: some other place to put the
things they were worried about, a desk
they could lock, another little: room.
But the point is that people usually
don’t bother to think about that. They
have the idea: “This room is Mine, I
can lock it, to hell with everyone else”,
and that is exactly the spirit that we
must teach them not to have.

But this spirit of unlocking doors
wasn’t an isolated thing, it was part
of an entire way of life. The hackers
at the Al lab were really enthusiastic
about writing good programs, and in-
teresting programs. And it was because
they were so eager to get more work
done, that they wouldn’t put up with
having the terminals locked up, or lots
of other things that people could do to
obstruct useful work. The differences
between people with high morale who
really care about what they’re trying to
do, and people who think of it as just
a job. If it’s just a job. who cares if the
people who hired you are so stupid they

26 STACKPOINTER 3-1987

make you sit and wait, it’s their time,
their money but not much gets done in
a place like that, and it’s no fun to be in
a place like that.

Another thing that we didn’t have at
the AI lab was file protection. There
was no security at all on the com-
puter. And we very conciously wanted
it that way. The hackers who wrote
the Incompatible Timesharing System
decided that file protection was usu-
ally used by a self-styled system man-
ager to get power over everyone else.
They didn’t want anyone to be able to
get power over them that way, so they
didn’t implement that kind of a feature.
The result was, that whenever some-
thing in the system was broken, you
could always fix it. You never had to
sit there in frustration because there was
NO WAY, because you knew exactly
what’s wrong, and somebody had de-
cided they didn’t trust you to do it. You
don’t have to give up and go home,
waiting for someone to come in in the
morning and fix the system when you
know ten times as well as he does what
needs to be done.

And we didn’t let any professors or
bosses decide what work was going to
be done either, because our job was to
improve the system! We talked to the
users of course; if you don’t do that you
can’t tell what’s needed. But after do-
ing that, we were the ones best able to
see what kind of improvements were
feasible, and we were always talking to
each other about how we’d like to see

the system changed, and what sort of
neat ideas we’d seen in other systems
and might be able to use. So the result
is that we had a smoothly functioning
anarchy, and after my experience there,
I'm convinced that that is the best way
for people to live.

Unfortunatly the Al lab in that form
was destroyed. For many years we
were afraid the AI lab would be de-
stroyed by another lab at MIT, the Lab
for Computer Science, whose director
was a sort of empire builder type, do-
ing everything he could to get himself
promoted within MIT, and make his or-
ganization bigger, and he kept trying to
cause the Al lab to be made a part of
his lab, and nobody wanted to do things
his way because he believed that people
should obey orders and things like that.

But that danger we managed to de-
fend against, only to be destroyed by
something we had never anticipated,
and that was commercialism. Around
the early 80’s the hackers suddenly
found that there was now commercial
interest in what they were doing. It was
possible to get rich by working at a pri-
vate company. All that was necessary
was to stop sharing their work with the
rest of the world and destroy the MIT-
Al lab, and this is what they did despite
all the efforts I could make to prevent
them.

Essentially all the competent pro-
grammers except for me, at the Al lab
were hired away, and this caused more

STACKPOINTER 3-1987 27

than a momentary change, it caused
a permanent transformation because it
broke the continuity of the culture of
hackers. New hackers were always at-
tracted by the old hackers; there were
the most fun computers and the people
doing the most interesting things, and
also a spirit which was a great deal of
fun to be part of. Once these things
were gone, there is nothing to recom-
mend the place to anyone new, so new
people stopped arriving. There was no-
one they could be inspired by, no-one
that they could learn those traditions
from. In addition no-one to learn how
to do good programming from . With
just a bunch of professors and graduate
students, who really don’t know how to
make a program work, you can’t learn
to make good programs work. So the
MIT AI lab that I loved is gone, and af-
ter a couple of years of fighting against
the people who did it to try to punish
them for it I decided that I should dedi-
cate my self to try to create a new com-
munity with that spirit.

But one of the problems I had to face
was the problem of proprietary soft-
ware. For example one thing that hap-
pened at the lab, after the hackers left,
was that the machines and the software
that we had developed could no longer
be maintained. The software of course
worked, and it continued to work if
nobody changed it, but the machines
did not. The machines would break
and there would be no-one who could
fix them and eventually they would be
thrown out. In the old days, yes we

had service contracts for the machines,
but it was essentially a joke. That was
a way of getting parts after the expert
hackers from the Al lab fixed the prob-
lem. Because if you let the field-service
person fix it it would take them days,
and you didn’t want to do that, you
wanted it to work. So, the people who
knew how to do those things would just
go and fix it quickly, and since they
were ten times as competent as any field
service person, they could do a much
better job. And then they would have
the ruined boards, they would just leave
them there and tell the field service per-
son “take these back and bring us some
new ones’.

In the real old days our hackers used
to modify the machines that came from
Digital also. For example, they built
paging-boxes to put on the PDP-10’s .
Nowadays I think there are some peo-
ple here [in Stocholm] who do such
things too, but it was a pretty unusual
thing in those days. And the really old
days, the beginning of the 1960’s peo-
ple used to modify computers adding
all sorts of new instructions and new
fancy timesharing features, so that the
PDP-1 at MIT by the time it was re-
tired in the mid-seventies had some-
thing like twice as many instructions as
it had when it was delivered by Digital
in the early sixties, and it had special
hardware scheduler assisting features
and strange memory-mapping features
making it possible to assign individ-
ual hardware devices to particular time-
sharing jobs and lots of things that I

28 STACKPOINTER 3-1987

hardly really know about. I think they
also built in some kind of extended ad-
dressing modes they added index reg-
isters and indirect addressing, and they
turned it essentially from a weak ma-
chine into a semi-reasonable one.

I guess it is one of the disadvantages
of VLSI that it’s no longer so feasible
to add instructions to your machines.

The PDP-1 also had a very interest-
ing feature, which is that it was possi-
ble to interesting programs in very few
instructions. Fewer that any other ma-
chine since then. I believe for example
that the famous display hack “munch-
ing squares” which made squares that
get bigger and break up into lots of
smaller squares which gets bigger and
break up into smaller squares . That
was written in something like five in-
_ structions on the PDP-1. And many
other beautiful display programs could
be written in few instructions.

So, that was the Al lab. But what
was the culture of hackers like aside
from their anarchism? In the days of the
PDP-1 only one person could use the
machine, at the beginning at least. Sev-
eral years later they wrote a timesharing
system, and they added lots of hardware
for it. But in the beginning you just
had to sign up for some time. Now of
ccurse the professors and the students
working on official projects would al-
ways come in during the day. So, the
people who wanted to get lots of time
would sign up for time at night when

there were less competition, and this
created the custom of hackers work-
ing at night. Even when there was
timesharing it would still be easier to
get time, you could get more cycles at
night, because there were fewer users.
So people who wanted to get lots of
work done, would still come in at night.
But by then it began to be something
else because you weren’t alone, there
were a few other hackers there too,
and so it became a social phenomenon.
During the daytime if you came in, you
could expect to find professors and stu-
dents who didn’t really love the ma-
chine, whereas if during the night you
came in you would find hackers. There-
fore hackers came in at night to be with
their culture. And they developed other
traditions such as getting Chinese food
at three in the morming. And I remem-
ber many sunrises seen from a car com-
ing back from Chinatown. It was actu-
ally a very beautiful thing to see a sun-
rise, cause’ that’s such a calm time of
day. It’s a wonderful time of day to get
ready to go to bed. It’s so nice to walk
home with the light just brightening and
the birds starting to chirp, you can get
a real feeling of gentle satisfaction, of
tranquility about the work that you have
done that night.

Another tradition that we began was
that of having places to sleep at the lab.
Ever since I first was there, there was al-
ways at least one bed at the lab. And I
may have done a little bit more living at
the lab than most people because every
year of two for some reason or other I'd

STACKPOINTER 3-1987 29

have no apartment and I would spend
a few months living at the lab. And
I've always found it very comfortable,
as well as nice and cool in the summer.
But it was not at all uncommon to find
people falling asleep at the lab, again
because of their enthusiasm; you stay
up as long as you possibly can hack-
ing, because you just don’t want to stop.
And then when you’re completely ex-
hausted, you climb over to the nearest
soft horizontal surface. A very infor-
mal atmosphere.

But when the hackers all left the lab
this caused a demographic change, be-
cause the professors and the students
who didn’t really love the machine
were just as numerous as before, so they
were now the dominant party, and they
were very scared. Without hackers to
maintain the system, they said, “we’re
going to have a distaster, we must have
commercial software”, and they said
“we can expect the company to main-
tain it”. It proved that they were utterly
wrong, but that’s what they did.

That was exactly when anew KL-10
system was supposed to arrive, and the
question was, would it run the Incom-
patible Timesharing System or would it
run digital’s Twenex system. Once the
hackers were gone who probably would
have supported using ITS, the academic
types chose to run the commercial soft-
ware, and this had several immediate
effects. Some of them weren't actu-
ally so immediate but they followed in-
evitably as anyone who thought about

it would see.

One thing was that that software
was much more poorly written, and
harder to understand; therefore mak-
ing it harder for people to make the
changes that were in fact needed. An-
other was, that that softiware came with
security, which had the inevitable ef-
fect of causing people to cooperate with
each other less. In the old days on ITS
it was considered desirable that every-
one could look at any file, change any
file, because we had reasons to. I re-
member one interesting scandal where
somebody sent a request for help in us-
ing Macsyma. Macsyma is a symbolic
algebra program that was developed at
MIT. He sent to one of the people work-
ing on it a request for some help, and
he got an answer a few hours later
from somebody else. He was horrified,
he sent a message “so-and-so must be
reading your mail, can it be that mail
files aren’t properly protected on your
system?” “Of course, no file is pro-
tected on our system. What’s the prob-
lem? You got your answer sooner; why
are you unhappy? Of course we read
each other’s mail so we can find people
like you and help them.” Some people
just don’t know when they’re well off.

But of course Twenex not only has
security, and by default turns on secu-
rity, but it’s also designed with the as-
sumption that security is in use. So
there are lots of things that are very easy
to do that can cause a lot of damage,
and the only thing that wouid stop you

30 STACKPOINTER 3-1987

from doing them by accident, is secu-
rity. OnITS we evolved other means of
discouraging people from doing those
things by accident, but on Twenex you
didn’t have them because they assumed
that there was going to be be strict secu-
rity in effect and only the bosses were
going to have the power to do them.
So they didn’t put in any other mecha-
nism to make it hard to do by accident.
The result of this is that you can’t just
take Twenex and turn of the security
and have what you’d really like to have,
and there were no longer the hackers to
make the changes to put in those other
mechanisms, so people were forced to
use the security. And about six months
after the machine was there they started
having some coups d’etat. That is, at
first we had the assumption that every-
one who worked for the lab was go-
‘ing to have the wheel bit which gave
full powers to override all security mea-
sures, but some days you’d come in
some afternoon and find out that the
wheel bits of just about everybody had
been turned off.

When I found out about those, I
overthrew them. The first time, I hap-
pened to know the password of one of
the people who was included among
the elite, so I was able to use that to
turn everyone back on. The second
time he had changed his password, he
had now changed his sympathies, he
was riow part of the aristocratic party.
So, I had to bring the machine down
and use non-timeshared DDT to poke
around. I poked around in the monitor

for a while, and eventually figured out
how to get it to load itself in and let me
patch it, so that I could turn off pass-
word checking and then I turned back
on a whole bunch of people’s wheel
bits and posted a system message. I
have to explain that the name of this
machine was OZ, so I posted a system
message saying: “There was another
attempt to seize power. So far the aris-
tocratic forces have been defeated—
Radio Free OZ” Later I discovered that
“Radio Free OZ” is one of the things
used by Firesign Theater. I didn’tknow
that at the time.

But gradually things got worse and
worse, it’s just the nature of the way
the system had been constructed forced
people to demand more and more se-
curity. Uxstil eventually I was forced
to stop using the machine, because I
refused to have a password that was
secret. Ever since passwords first ap-
peared at the MIT-AI lab I had come
to the conclusion that to stand up for
my belie, to follow my belief that there
should be no passwords, I should al-
ways make sure to have a password that
is as obvious as possible and I should
tell everyone what it is. Because I
don’t believe that it’s really desirable to
have security on a computer, I shouldn’t
be willing to help uphold the security
regime. On the systems that permit it I
use the “empty password” , and on sys-
tems where that isn’t allowed, or where
that means you can’t log in at all from
other places, things like that, I use my
login name as my password. It’s about

e —

STACKPOINTER 3-1987 31

as obvious as you can get. And when
people point out that this way people
might be able to log in as me, i say “yes
that’s the idea, somebody might have
a need to get some data from this ma-
chine. I want to make sure that they
aren’t screwed by security”

And an other thing that I always do
is I always turn of all protection on my
directory and files, because from time
to time I have useful programs stored
there and if there’s a bug I want people
to be able to fix it.

But that machine wasn’t designed
also to support the phenomenon called
“tourism”. Now “tourism” is a very
old tradition at the AI lab, that went
along with our other forms of anarchy,
and that was that we’d let outsiders
come and use the machine. Now in
the days where anybody could walk up

_ to the machine and log in as anything

he pleased this was automatic: if you
came and visited, you could log in and
you could work. Later on we formal-
ized this a little bit, as an accepted tra-
dition specially when the Arpanet be-
gan and people started connecting to
our machines from all over the country.
Now what we’d hope for was that these
people would actually learn to program
and they would start changing the op-
erating system . If you say this to the
system manager anywhere else he’d be
horrified. If you’d suggest that any
outsider might use the machine, he’ll
say “But what if he starts changing our
system programs?” But for us, when

an outsider started to change the sys-
tem programs, that ment he was show-
ing a real interest in becoming a con-
tributing member of the community.
We would always encourage them to
do this. Starting, of course, by writ-
ing new system utilities, small ones,
and we would look over what they had
done and correct it, but then they would
move on to adding features to exist-
ing, large utilities. And these are pro-
grams that have existed for ten years
or perhaps fifteen years, growing piece
by pieée as one craftsman after an other
added new features. ,

Sort of like cities in france you might
say, where you can see the extremely
old buildings with additions made a
few hundred years later all the way up
to the present. Where in the field of
computing, a program that was started
in 1965 is essentially that. So we
would always hope for tourists to be-
come system maintainers, and perhaps
then they would get hired, after they
had already begun working on system
programs and shown us that they were
capable of doing good work.

But the ITS machines had certain
other features that helped prevent this
from getting out of hand, one of these
was the “spy” feature, where anybody
could watch what anyone else was do-
ing. And of course tourists loved to spy,
they think it’s such a neat thing, it’s a
little bit naughty you see, but the result
is that if any tourist starts doing any-
thing that causes trouble there’s always

32 STACKPOINTER 3-1987

somebody else watching him. So pretty
soon his friends would get very mad be-
cause they would know that the contin-
ued existance of tourism depended on
tourists being responsible. So usually
there would be somebody who would
know who the guy was, and we’d be
able to let him leave us alone. And
if we couldn’t, then what we would
was we would turn of access from cer-
tain places completely, for a while, and
when we turned it back on, he would
have gone away and forgotten about us.
And so it went on for years and years
and years.

But the Twenex system wasn’t de-
signed for this sort of thing, and eventu-
ally they wouldn’t tolerate me with my
password that everybody knew, tourists
always logging in as me two or three at
a time, so they started flushing my ac-
count. And by that time I was mostly
working on other machines anyway, so
eventually I gave up and stopped ever
turning it on again. And that was that.
I haven’t logged in on that machine as
myself...[At this point RMS is inter-
rupted by tremendous applause]...for.

But when they first got this Twenex
system they had several changes they
wanted to make. Changes in the way
security worked. They also wanted
to have the machine on both the Arpa
network and the MIT-chaos network,
and it turns out that they were unable
to do this, that they couldn’t get any-
one who was sufficiently competent to
make such changes. There was no

longer talent available to do it, and
it was to hard to change. That sys-
tem was much harder to understand,
because it was to poorly written, and
of course, Digital wouldn’t do these
things, so their ideas that a commer-
cial system would essentially maintain
it self, proved to be mistaken. They had
just as much need for system hackers,
but they had no longer the means to en-
tice system hackers. And nowadays at
MIT there are more people interested
in hacking on ITS, than there are inter-
ested in hacking on Twenex.

And the final reason why this is so, is
that Twenex can’t be shared. Twenex is
a proprietary program and you’re only
allowed to have the sources if you keep
them secret in certain nasty ways, and
this gives them a bad flavor. Unless a
person is oblivious (which some people
in computers are, there’s some people
who’ll do anything if it’s fun for them,
and won’t think for a minute whether
they’re cooperating with anyone else,
but you’d have to be pretty oblivious

to not to notice what a sad thing it is

to work on a program like that, and
that is a further discuragement). And
if that isn’t enough there is the fact that
every year or so they’re going to give
you a new release full of 50,000 addi-
tional lines of code all written by mon-
keys. Because they generally follow
the “million monkeys typing, and even-
tually they’ll come up with something
useful” school of system development.

It was clear to me from what I saw

STACKPOINTER 3-1987 33

happening to these proprietary systems
that the only way we could have the
spirit of the old AI lab was to have a
free operating system. To have a sys-
tem made up of free software which
could be shared with anyone. So that
we could invite everyone to join in im-
proving it. And that’s what led up to the
GNU project. So I guess we’ve arrived
at the second part of the talk.

The GNU Project

About three and a half year ago it
was clear to me that I should start devel-
oping.a free software system. I could
see two possible kinds of systems to de-
velop: One: A LISP-machine-like sys-
tem, essentially a system just like the
MIT LISP machine system that had just
been developed, except free, and run-
ning on general purpose hardware, not
on special LISP machines. And the
other possibility was a more conven-
tional operating system, and it was clear
to me that if I made a conventional op-
erating system, I should make it com-
patible with UNIX, because that would
make it easy for people all around to
switch to it. After a little while, I con-
cluded I should do the latter and the rea-
son was, that I saw that you can’t have
something really like the LISP machine
system on general purpose hardware.
The LISP machine system uses spe-
cial hardware plus special writable mi-
crocode to gain both good execution
speed and robust detection of errors at
runtime, specially data-type errors. In

order to make a LISP system run fast
enough on ordinary hardware, you have
to start making assumptions. Assum-
ing that a certain argument is the right
type, and then if it isn’t the system just
crashes.

Of course you can put in explicit
checks, you can write a robust program
if you want, but the fact is that you
are going to get things like memory ad-
dressing errors when you feed a func-
tion an argument of the wrong type if
you did NOT put in things to check for .
it.

So the result is then that you
need something running undemeath the
LISP system to you catch these errors,
and give the user the ability to keep
on running, and debug what happened
to him. Finally I concluded that if I
was going to have to have a operat-
ing system at a lower level, I might as
well make a good operating-system—
that it was a choice between an operat-
ing system and the lisp, or just an op-
erating system; therefore I shouid do
the operating system first, and I should
make it compatible with UNIX. Finally
when I realized that I could use the
most amusing word in the English lan-
guage as a name for this system, it
was clear which choice I had to make.
And that word is of course GNU, which -
stands for “Gnu’s Not Unix”. The re-
cursive acronym is a very old tradition
among the hacker community around
MIT. It started, I believe with an edi-
tor called TINT, which means: “Tint Is

34 STACKPOINTER 3-1987

Not Teco”, and later on it went through
names such as SINE for “SINE Is Not
Emacs”, and FINE for “Fine Is Not
Emacs”, and EINE for “Eine Is Not
Emacs”, and ZWEI for “Zwei Was Eine
Initially”, and ultimately now arrives at
GNU.

I would say that since the time about
two and a half years ago when I actu-
ally started working on GNU, I've done
more than half of the work. WhenI was
getting ready to start working on the
project, I first started looking around
for what I could find already avail-
able free. I found out about an inter-
esting portable compiler system which
was called “the free university compiler
kit”, and I thought, with a name like
that, perhaps I could have it. So, I sent
amessage to the person who had devel-
oped it asking if he would give it to the
GNU project, and he said “No, the uni-
versity might be free, but the software
they develop isn’t”, but he then said that
he wanted to have a UNIX compatible
system too, and he wanted to write a
sort of kernel for it, so why didn’t I then
write the utilities, and they could both
be distributed with his proprietary com-
piler, to encourage people to buy that
compiler. And I thought that this was
despicable and so I told him that my
first project would be a compiler.

I didn’t really know much about op-
timizing compilers at the time, because
I ’d never worked on one. But I got
my hands on a compiler, that I was told
at the time was free. It was a compiler

called PASTEL, which the authors say
means ‘“off-color PASCAL”.

Pastel was a very complicated lan-
guage including features such as para-
metrized types and explicit type pa-
rameters and many complicated things.
The compiler was of course written in
this language, and had many compli-
cated features to optimize the use of
these things. For example: the type
“string” in that language was a parame-
terized. type; you could say “string(n)”
if you,wanted a string of a particular
length; you could also just say “string”,
and the parameter would be determined
from the context. Now, strings are very
important, and it is necessary for a lot
of constructs that use them to run fast,
and this means that they had to have a
lot of features to detect such things as:
when the declared length of a string is
an argument that is known to be con-
stant throughout the function, to save
to save the value and optimize the code
they’re going to produce, many compli-
cated things. But I did get to see in this
compiler how to do automatic register
allocation, and some ideas about how
to handle different sorts of machines.

Well, since this compiler already
compiled PASTEL, what i needed to
do was add a front-end for C, which I
did, and add a back-end for the 68000
which I expected to be my first tar-
get machine. But I ran into a serious
problem. Because the PASTEL lan-
guage was defined not to require you
to declare something before you used

STACKPOINTER 3-1987 35

it, the declarations and uses could be
in any order, in other words: Pascal’s
“forward” declaration was obsolete, be-
cause of this it was necessary to read in
an entire program, and keep it in core,
and then process it all at once. The
result was that the intermediate stor-
age used in the compiler, the size of
the memory needed, was proportional
to the size of your file. And this also in-
cluded stack-space, you needed gigan-
tic amounts of stack space, and what I
found as a result was: that the 68000
system available to me could not run
the compiler. Because it was a horrible
version of unix that gave you a limit of
something like 16K words of stack, this
despite the existance of six megabytes
in the machine, you could only have
16Kw of stack or something like that.
And of course to generate its conflict
matrix to see which temporary values
conflicted, or was alive at the same time
as which others, it needed a quadratic
matrix of bits, and that for large func-
tions that would get it to hundreds of
thousands of bytes. Soimanaged to de-
bug the first pass of the ten or so passes
of the compiler, cross compiled on to
that machine, and then found that the
second one could never run.

While I was thinking about what to
do about these problems and wonder-
ing whether I should try to fix them or
write entirely new compiler, in a round-
about fashion I began working on GNU
Emacs. GNU Emacs is the main dis-
tributed portion of the GNU system.
It’s an extensible text editor a lot like

the original emacs which I developed
ten years ago, except that this one uses
actual LISP as its extension language.
The editor itself is implemented in C,
as is the LISP interpreter, so the LISP
interpreter is completely portable, and
you don’t need a LISP system external
to the editor. The editor contains its
own LISP system, and all of the editing
commands are written in LISP so that
they can provide you with examples to
look at for how to write your own edit-
ing commands, and things to start with,
80 you can change them into the editing
commands that you really want.

In the summer of that year, about
two years ago now, a friend of mine
told me that because of his work in
early development of Gosling Emacs,
he had permission from Gosling in a
message he had been sent to distribute
his version of that. Gosling originally
had set up his Emacs and distributed
it free and gotten many people to help
develop it, under the expectation based
on Gosling’s own words in his own
manual that he was going to follow the
same spirit that I started with the orig-
inal Emacs. Then he stabbed every-
one in the back by putting copyrights
on it, making people promise not to
redistribute it and then selling it to a
software-house. My later dealings with
him personally showed that he was ev-
ery bit as cowardly and despicable as
you would expect from that history.

But in any case, my friend gave me
this program, and my intention was to

36 STACKPOINTER 3-1987

change the editing commands at the top
level to make them compatible with the
original Emacs that I was used to. And
to make them handle all the combina-
tions of numerical arguments and so on
that one might expect that they would
handle and have all the features that I
wanted. But after a little bit of this, I
discovered that the extension language
of that editor, which is called MOCK-
LISP was not sufficient for the task. I
found that that I had to replace it imme-
diatly in order to do what I was plan-
ning to do. Before I had had the idea
of someday perhaps replacing MOCK-
LISP with real LISP, but what I found
out was that it had do be done first.
Now, the reason that MOCKLISP is
called MOCK, is that it has no kind
of structure datatype: it does not have
LISP lists; it does not have any kind
of array. It also does not have LISP
symbols, which are objects with names:
for any particular name, there is only
one object, so that you can type in the
name and you always get the same ob-
ject back. And this tremendously ham-
pers the writing of many kinds of pro-
grams, you have to do things by com-
plicated string-manipulation that don’t
really go that way.

So I wrote a LISP interpreter and
put it in in place of MOCKLISP and
in the process I found that I had to
rewrite many of the editor’s internal
data structures because I wanted them
to be LISP objects. I wanted the inter-
face between the LISP and the editor to
be clean, which means that objects such

as editor buffers, sub-processes, win-
dows and buffer-positions, all have to
be LISP objects, so that the editor prim-
itives that work on them are actually
callable as LISP functions with LISP
data. This meant that I had to redesign
the data formats of all those objects and
rewrite all the functions that worked on
them, and the result was that after about
six months I had rewritten just about
everything in the editor.

In addition, because it is so hard
to write things in MOCKLISP, all the
things that had been written in MOCK-
LISP were very unclean and by rewrit-
ing them to take advantage of the power
of real LISP, I could make them much
more powerful and much simpler and
much faster. So 1did that, and the result
was that when I started distributing this
program only a small fraction remained
from what I had received.

At this point, the company that
Gosling thinks he sold the program
to challenged my friend’s right to dis-
tribute it, and the message was on
backup tapes, so he couldn’t find it.
And Gosling denied having given him
permission. And then a strange thing
happened. He was negotiating with this
company, and it seemed that the com-
pany mainly was concerned with not
having anything distributed that resem-
bled what they were distributing. See,
he was still distributing, and the com-
pany where he worked, which is Megat-
est, was still distributing the same thing
he had given me, which really was

STACKPOINTER 3-1987 37

an old version of Gosling Emacs with
his changes, and so he was going to
make an agreement with them where
he would stop distributing that, and
would switch to using GNU Emacs,
and they would then acknowledge that
he really had the permission after all,
and then supposedly everyone would
be happy. And this company was talk-
ing to me about wanting to distribute
GNU Emacs, free of course, but also
sell various sorts of supporting assis-
tance, and they wanted to hire me to
help do the work. So it’s sort of strange
that they then changed their mind and
refused to sign that agreement, and put
up a message on the network saying
that I wasn’t allowed to distribute the
program. They didn’t actually say that
they would do anything, they just said
that it wasn’t clear whether they might
ever someday do something. And this
was enough to scare people so that no
one would use it any more, which is a
sad thing.

(Sometimes I think that perhaps one
of the best things I could do with my
life is: find a gigantic pile of propri-
etary software that was a trade secret,
and start handing out copies on a street
corner so it wouldn’t be a trade secret
any more, and perhaps that would be a
much more efficient way for me to give
people new free software than actually
writing it myself; but everyone is too
cowardly to even take it.)

So I was forced to rewrite all the rest
that remained, and I did that, it took me

about a week and a half. So they won
a tremendous victory. And I certainly
wouldn’t ever cooperate with them in
any fashion after that.

Then after GNU Emacs was reason-
ably stable, which took all in all about
a year and a half, I started getting back
to other parts of the system. I devel-
oped a debugger which I called GDB
which is a symbolic debugger for C
code, which recently entered distribu-
tion. Now this debugger is to a large ex-
tent in the spirit of DBX, which is a de-
bugger that comes with Berkeley Unix.
Commands consist of a word that says
what you want to do, followed by ar-
guments. In this debugger, commands
can all be abbreviated, and the common
commands have single character abbre-
viations, but any unique abbreviation
is always allowed. There are extensi-
ble HELP facilities, you can type HELP
followed by any command or even sub-
commands, and get a lengthy descrip-
tion of how to use that command. Of
courseryou can type any expression in
C, and'it will print the value.

You can also do some things that
are not usual in symbolic C debuggers,
for example: You can refer to any C
datatype at any memory address, ei-
ther to examine the value, or to as-
sign the value. So for example if you
want to store a floating point value in a
word at a certain address, you just say:
“Give me the object of type FLOAT or
DOUBLE at this address™ and then as-
sign that. Another thing you can do

38 STACKPOINTER 3-1987

is to examine all the values that have
been examined in the past. Every value
examined gets put on the “value his-
tory”. You can refer to any element
in the history by its numerical position,
or you can easily refer to the last el-
ement with just dollar-sign. And this
makes it much easier to trace list struc-
ture. If you have any kind of C struc-
ture that contains a pointer to another
one, you can do something like “PRINT
*$.next”, which says: “Get the next
field out of the last thing you showed
me, and then display the structure that
points at”. And you can repeat that
command, and each time you’ll see
then next structure in the list. Whereas
in every other C debugger that I’ve seen
the only way to do that is to type a
longer command each time. And when
this is combined with the feature that
just typing carriage-return repeats the
last command you issued, it becomes
very convenient. Just type carriage-
return for each element in the list you
want to see.

There are also explicitly settable
variables in the debugger, any number
of them. You say dollar-sign followed
by a name, and that is a variable. You
can assign these variables values of any
C datatype and then you can examine
them later. Among the things that these
are useful for are: If there’s a particular
value that you’re going to examine, and
you know you are going to refer to it a

lot , then rather than remember its num- -

ber in the history. you might give it a
name. You might also find use for them

when you set conditional breakpoints.
Conditional breakpoints are a feature
in many symbolic debuggers, you say
“stop when you get to this point in the
program, but only if a certain expres-
sion is true”. The variables in the de-
bugger allow you to compare a variable
in the program with a previous value of
that variable that you saved in a debug-
ger variable. Another thing that they
can be used for is for counting, because
after all, assignments are expressions in
C, therefore you can do “$foo=+5" to
increment the value of “$foo” by five,
or just “$foo++" you can do. You can
even do this in a conditional breakpoint,
so that’s a cheap way of having it break
the tenth time the breakpoint is hit, you
can do “$foo—==0". Does everyone
follow that? Decrement foo and if it’s
zero now, break. And then you set $foo
to the number of times you want it to
skip, and you let it go. You can also use
that to examine elements of an array.
Suppose you have an array of pointers,
you can then do:

PRINT X[$foo++]
But first you do
SET $foo=0

Okay, when you do that [points at
the “PRINT” expression] , you get the
zeroeth element of X, and then you do
it again and it gets the first element,
and suppose these are pointers to struc-
tures, then you probably put an aster-
isk there [before the X in the PRINT

STACKPOINTER 3-1987 39

expression] and each time it prints the
next structure pointed to by the element
of the array. And of course you can re-
peat this command by typing carriage-
return. If a single thing to repeat is
not enough, you can create a user-
defined-command. You can say “DE-
FINE MUMBLE”, and then you give
some lines of commands and then you
say “END”. And now there is defined a
“MUMBLE” command which will ex-
ecute those lines. And it’s very useful
to put these definitions in a command
file. You can have a command file in
each directory, that will be loaded au-
tomatically when you start the debug-
ger with that as your working directory.
So for each program you can define a
set of user defined commands to access
the datastructures of that program in a
useful way. You can even provide doc-
umentation for your user-defined com-
mands, so that they get handled by
the “help” features just like the built-in
commands.

One other unusual thing in this de-
bugger, is the ability to discard frames
from the stack. Because I believe it’s
important not just to be able to exam-
ine what’s happening in the program
you're debugging, but also to change
it in any way conceivable. So that af-
ter you've found one problem and you
know what’s wrong, you can fix things
up as if that code were correct and find
the next bug without having to recom-
pile your program first. This means not
only being able to change the data areas
in you program flexibly, but also teing

able to change the flow of control. In
this debugger you can change the flow
of control very directly by saying:

SET $PC=<some number>

So you can set the program counter.
You can also set the stack pointer, or
you can say

SET $SP+=<something>

If you want to increment the stack-
pointer a certain amount. But in ad-
dition you can also tell it to start at
a particular line in the program, you
can set the program counter to a par-
ticular source line. But what if you
find that you called a function by mis-
take and you didn’t really want to call
that function at all? Say, that func-
tion is so screwed up that what you
really want to do is get back out of
it and;do by hand what that function
should have done. For that you can
use the “RETURN” command. You se-
lect a stack frame and you say “RE-
TURN?”, and it causes that stack-frame,
and all the ones within it, to be dis-
carded as if that function were return-
ing right now, and you can also spec-
ify the value it should return. This does
not continue execution; it pretends that
return happened and then stops the pro-
gram again, so you can continue chang-
ing other things.

And with all these things put to-
gether you thus have pretty good con-
trol over what’s going on in a program.

40 STACKPOINMTER 3-1987

In addition one slightly amusing
thing: C has string constants, what hap-
pens if you use a string constant in an
expression that you’re computing in the
debugger? Ithas to create a string in the
program you were debugging. Well it
does. It sets up a call to MALLOC in
that debugged program, lets MALLOC
run, and then gets control back. Thus it
invisibly finds a place to put the string
constant.

Eventually when this debugger is
running on the real GNU system, I in-
tend to put in facilities in the debug-
ger to examine all of the internal sta-
tus of the process that is running un-
demneath it. For example to examine
the status of the memory map, which
pages exist, which are readable, which
are writable, and to examine the infe-
rior program’s terminal status. There
already is a bit of a command; this de-
bugger, unlike the debuggers on UNIX,
keeps the terminal status completely
separate for the debugger and the pro-
gram you're debugging, so that it works
with programs that run in raw mode, it
works with programs that do interrupt
driven input, and there’s also a com-
mand that enables you to find out some-
thing about the terminal settings at the
program you're debugging is actually
using. I believe that in general a de-
bugger should allow you to find out ev-
erything that’s going on in the inferior
process.

There are two other main parts of the
GNU system that already exist. One

is the new C compiler, and one is the
TRIX kemel.

The new C compiler is something
that I've written this year since last
spring. I finally decided that I'd have
to throw out PASTEL. This C com-
piler uses some ideas taken from PAS-
TEL, and some ideas taken from the
University of Arizona Portable Opti-
mizer. Their interesting idea was to
handle many different kinds of ma-

. chines by generating simple instruc-

tions,:and then combining several sim-
ple instructions into a complicated in-
struction when the target machine per-
mits it. In order to do this uniformly,
they represent the instructions in alge-
braic notation. For example, an ADD
instruction might be represented like
this:

r[3]=r[2]+4

This would be a representation in-
side their compiler for instruction to
take the contents of register two, add
four and store it in register three. In this
fashion you can represent any possible
instruction for any machine. So they
actually did represent all the instruc-
tions this way and then when it came
time to try to combine them, they would
do this by substituting one expression
into another, making a more compli-
cated algebraic expression for the com-
bined instruction.

Sometimes depending on whether
the result of the first instruction had

STACKPOINTER 3-1987 41

any further use, it might be necessary
to make a combined instruction with
two assignment operators. One for this
value [pointing at ???] and another one
with this value [pointing at ?7??] sub-
stituted in it with what came from the
second instruction. But if this value
was only used that once, you could
eliminate it after substituting for it;
there’d be no need to compute it any
more. So it’s actually somewhat com-
plicated doing the substitution correctly
checking that the intervening instruc-
tions don’t change any of these values
and other such things. When you sup-
port such things as auto-increment and
auto-decrement addressing, which I do
now, you also have to do various checks
for those to check for situations where
what you’re doing is not value preserv-
ing.

But after checking all those things,
then you take the substituted combined
expression and put it through a pat-
tern matcher, which recognizes all the
valid instructions of your chosen target
machine. And if it’s recognized, then
you replace those two instructions with
the combined one, otherwise you leave
them alone. And their technique is to
combine two or three instructions re-
lated by dataflow in this way.

In the Arizona compiler, they ac-
tually represent things as text strings
like this, and their compiler is horribly
slow. First I had some idea of just using
their compiler and making changes in
it, but it was clear to me I had to rewrite

it entirely to get the speed I wanted,
so I have rewritten it to use list struc-
ture representations for all these expres-
sions. Things like this:

(set (reg 2)
(+ (reg2)
(int 4)))

This looks like Lisp, but the seman-
tics of these are not quite LISP, because
each symbol here is one recognized
specially. There’s a particular fixed set
of these symbols that is defined, all the
ones you need. And each one has a par-
ticular pattern of types of arguments,
for example: “reg” always has an in-
teger, because registers are numbered,
but “+” takes two subexpressions, and
so on. And with each of these expres-
sions is also a data type which says es-
sentially whether it’s fixed or floating
and how many bytes long it is. It could
be extended to handle other things too
if you needed to.

And the way I do automatic register
allocation is that when I initially gener-
ate this code, and when I do the com-
bination and all those things, for every
variable that conceivably go into a reg-
ister, I allocate what I call a pseudo reg-
ister number, which is a number start-
ing at sixteen or whatever is to high to
be a real register for your target ma-
chine. So the real registers are num-
bered zero to fifteen or whatever and
above that comes pseudo registers. And
then one of the last parts of the compiler
consists of going through and changing

42 STACKPOINTER 3-1987

all the pseudo registers to real registers.
Again it makes a conflict graph, it sees
which pseudo registers are alive at the
same point and they of course can’t go
in the same real register, and then it tries
packing pseudo registers into real reg-
isters as much as it can, ordering them
by priority of how important they are.

And finally it then has to correct
the code for various problems, such as
happen when there were pseudo regis-
ters that don’t fit in the real registers,
that had to be put into stack slots in-
stead. When that happens on certain
machines, some of the instructions may
become invalid. For example on the
68000 you can add a register into mem-
ory and you can add memory into reg-
ister, but you can’t add one memory lo-
cation into another. So if you have an
ADD instruction, and you’re headed for
a 68000 and both of the things end up in
memory, it’s not valid. So this final pass
goes through and copies things into reg-
isters and out of registers as needed to
correct those problems.

Problems can also arise with index
registers. If you're trying to index by
something, then most of the time that
code will become invalid if the index
quantity is in memory, except in a few
cases on some machines where you can
it with indirect addressing. In the cases
when you’re doing auto-increment on
an index register you may have to copy
the value into a register, do the instruc-
tion, and then copy the incremented
value back to the memory slot where it

really lives.

There’s got room for a lot of hair,
and I've not finished implementing all
the hair needed to make really fully ef-
ficient.

This compiler currently works by
having a parser which turns C code
into effectively a syntax tree annotated
with C datatype information. Then
another pass which looks at that tree
and generates code like this [LISP
like code]. Then several optimization
passes. One to handle things like jumps
across jumps, jumps to jumps, jumps
to .+1, all of which can be immedi-
atly simplified. Then a common subex-
pression recognizer, then finding ba-
sic blocks, and performing dataflow-
analysis, so that it can tell for each in-
struction which values are used in that
instruction and never used afterward.
And also linking each instruction to the
places- where the values it uses were
generated, so if I have one instruction
which generates pseudo register R[28],
and then another instruction later which
uses R[28] and it’s the first place to
use R[28], I make the second one point
back to the first one, and this pointer
is used to control the attempts to com-
bine the instructions. You don’t com-
bine adjacent instructions, you com-
bine an instruction that uses a value
with the instruction that produced that
value. Even if there are other instruc-
tions in between, they don’t matter for
this, you just have to check them to
make sure they don’t do anything to in-

STACKPOINTER 3-1987 43

terfere. Then after the combiner comes
the dynamic register allocator, and fi-
nally something to convert it into as-
sembly code.

In the Arizona compiler the in-
struction recognizer was generated with
LEX. Your machine description was
simply a LEX program that LEX would
turn into a C function to recognize valid
instructions as strings. What I have
is instead a special purpose decision
tree that’s generated from a machine de-
scription written in this syntax as if it
were LISP. And this recognizer is used
as a subroutine for many different parts
of the compiler.

Currently this compiler runs about
as fast as PCC. It runs noticeably faster
if you tell it not to do the hairy regis-
ter allocation, in which case it allocates
registers the same way as PCC does. In
its super hairy mode it does a much bet-
ter job of allocating registers than PCC,
and I observe that for the VAX it gener-
ates the best code I've seen from any C
compiler on the VAX.

For the 68000 the code is still not
ideal. I can see places where early
stages do things that are not the best,
because it can’t fully look ahead. It has
a choice in an early stage, and it does
the thing that it thinks is going to be
best, but really if it did the other one,
a later stage is actually smart enough to
do something even better. But the early
stage doesn’t know what the later stage
is going to do, so I have more work to

do on some of these things.

Sometimes this causes it to free up
registers unnecessarily. Because when
things wind up in memory and it needs
to copy them into registers, it needs to
get registers to copy them into. This
means taking registers that it has al-
ready allocated to, and kicking those
temporary quantities out to stack slots.
Of course this may invalidate more in-
structions now that those things are in
memory, not registers, so it has to check
again and again. Sometimes it thinks it
has to copy things to registers and really
it isn’t going to have to, so it may free
up too many things and thus not use all
the registers that it could.

(Question: Do you have a code gen-
erator for 32000?) Not yet, but again,
it’s not a code generator it’s just a ma-
chine description that you need. A
list of all the machine instructions de-
scribed in this [LISP like] form. So in
fact aside from the work of implement-
ing the idea of constraints on which ar-
guments can be in registers and which
kind of registers, which is something
which was needed for the 68000 and
was not needed for the VAX, the work
of porting this compiler from the VAX
to the 68000 just took a few days. So
it’s very easy to port.

The compiler currently generates as-
sembler code and it can generate de-
bugging information either in the for-
mat that DBX wants, or in the spe-
cial internal format of GDB. I'd say the

44 STACKPOINTER 3-1987

only work needed on this compiler is
in three areas. One: I have to add a
“profiling” feature, like the one that the
UNIX compilers have. Two: I have
to make these register allocation things
smarter, so that I can stop seeing stupid
things appearing in the output. And
three: There are various bugs, things
that doesn’t handle correctly yet, al-
though it has compiled itself correctly.
Iexpect this will just take a few months,
and then I will release the compiler.

The other sizable part of the system
that exist, is the kernel. (Question: A
pause?) Ah, yeah I guess we’ve. for-
gotten about breaks. Why don’tI finish
talking about the kernel, which should
only take about five minutes, and then
we can take a break.

Now, for the kernel I am plan-
ning to use a system called TRIX (it
doesn’t stand for anything that I know
of) which was developed as a research
project at MIT. This system is based
on Remote Procedure Call. Thus pro-
grams are called domains. Each do-
main is a address space and various ca-
pabilities, and a capability is none other
than the ability to call a domain. Any
domain can create “capability ports” to
call it, and then it can pass these ports
to other domains, and there is no dif-
ference between calling the system and
calling another user domain. Infactyou
can’t tell which you have. Thus it is
very easy to have devices implemented
by other user programs. A file system
could be implemented by a user pro-

gram, transparently. It’s also transpar-
ent to communicate across networks.
You think that you’re directly calling
another domain, but really you’re call-
ing the network server domain. It takes
the information that you gave in the
call, and passes this over the network
to another server program which then
calls the domain that you're trying to
talk to. But you and that other domain
see this as happening invisibly.

The TRIX kernel runs, and it has a
certain limited amount of UNIX com-
patibility, but it needs a lot more. Cur-
rently it has a file system that uses the
same structure on disk as the ancient
UNIX file system does. This made it
easier to debug the thing, because they -
could set up the files with UNIX, and
then they could run TRIX, but that file
system doesn’t have any of the features
that I believe are necessary.

Features that I believe must be added
include: Version numbers, undeletion,
information on when and how and
where the file was backed up on tape,
atomic superseding of files. I believe
that it is good that in Unix when a file
is being written, you can already look at
what’s going there, so for example, you
can use “tail” to see how far the thing
got, that’s very nice. And if the pro-
gram dies, having partly written the file,
you can see what it produced. These
things are all good, but, that partly writ-
ten output should not ever be taken for
the complete output that you expected
to have eventually. The previous ver-

STACKPOINTER 3-1987 45

sion of that should continue to be visi-
ble and used by everyone who tries to
use it, until the new version is com-
pletely and correctly made. This means
that the new version should be visible in
the file system but not under the name
it is supposed to have. It should get
renamed when it’s finished. Which is
by the way what happens in ITS, al-
though there each user program has to
do this explicitly. For UNIX compati-
bility with the user programs, it has to
happen invisibly.

I'have a weird hairy scheme to try to
make version numbers fit with the ex-
isting UNIX user programs. And this
is the idea that you specify a file name
leaving the version number implicit, if
you just specify the name in the ordi-
nary way. But if you wish to specify a
name exactly, either because you want
to state explicitly what version to use,
or because you don’t want versions at

all, you put a point at the end of it..

Thus if you give the filename “FOO”
it means “Search the versions that exist
for FOO and take the latest one”. But
if you say “FOOQ.” it means “use ex-
actly the name FOO and none other”.
If you say “FOO.3.” it says “use ex-
actly the name FOO.3” which of course
is version three of FOO and none other.
On output, if you just say “FOO”, it
will eventually create a new version of
“FOO”, but if you say “FOO.” it will
write a file named exactly “FOO”.

Now there’s some challenges in-
volved in working out all the details

in this, and seeing whether there are
any lingering problems, whether some
UNIX software actually breaks despite
feeding them names with points in them
and so on, to try to make it get the same
behavior.

I would expect that when you open
a file for output whose name ends in
a point, you should actually open that
name right away, so you get the so you
get the same UNIX behavior, the par-
tially written output is immediatly vis-
ible, whereas when you output a name
that doesn’t end in a point, the new ver-
sion should appear when you close it,
and only if you close it explicitly. If
it gets closed because the job dies, or
because the system crashes or anything
like that, it should be under a different
name.

And this idea can be connected up to
“star matching”, by saying that a name
that doesn’t end in a point is matched
against all the names without their ver-
sion numbers, so if a certain directory
has files like this:

foo.1
foo.2
f00.3

[Tl

If I say “x”, that’s equivalent to

foo
bar

because it takes all the names and gets
rid of their versions, and takes all the

46 STACKPOINTER 3-1987

distinct ones. But if I say “#.” then it
takes all the exact names, puts a point
after each one, and matches against
them. So this gives me all the names
for all the individual versions that ex-
ist. And similar, you can see the differ-
ence between “#.c” and “.c.” this [the
firstjwould give you essentially ver-
sionless references to all the “.c” files,
whereas this [the second] will give you
all the versions well this actually
wouldn’t, you’d have to say “x.c.*.”, I
haven’t worked out the details here.

Another thing, that isn’t a user visi-
ble feature and is certainly compatible
to put in, is failsafeness in the file sys-
tem. Namely, by writing all the infor-
mation on disk in the proper order, ar-
ranging that you can press “halt” at any
time without ever corrupting thereby
the file system on disk. It is so well
known how to do this, I can’t imagine
why anyone would neglect it. Another
idea is further redundant information.
I’m not sure whether I'll do this or not,
but I have ideas for how to store in each
file all of its names, and thus make it
possible if any directory on disk is lost,
to reconstruct it from the rest of the con-
tents of the disk.

Also I think I know how to make it
possible to atomically update any por-
tion of a file. Thus if you want to re-
place a certain subrange of a file with
new data in such a fashion that any at-
tempt to read the file will either see only
the old data, or only the new data. I be-
lieve I can do that, without any locking

even.

For network support, I intend even-
tually to implement TCP/IP for this sys-
tem. I also think it’s possible to use
KERMIT to get something effectively
equivalent to UUCP.

A shell T believe has already been
written. It has two modes, one imitat-
ing the BOURNE shell, and one imi-
tating the C-shell in the same program.
I have not received a copy of it yet,
and I don’t know how much work I'll
have to do on it. Also many other
utilities exists. A MAKE exists, LS,
there’s a YACC replacement called BI-
SON which is being distributed. Some-
thing pretty close to a LEX exits, butit’s
not totally compatible, it needs some
work. And, in general what remains to
be done is much less that what’s been
done, but we still need lots of people to
help out.

People always ask me “When is it
going to be finished?” Of course I can’t
know when it’s going to be finished,
but that’s the wrong question to ask me.
If you were planning to pay for it, it
would make sense for you to want to
know exactly what are you going to get
and when. But since you’re not going
to pay for it, the right question for you
to ask is “how can you help make it
get finished sooner?” I have a list of
projects, it is on a file at MIT, and peo-
ple who are interested in helping could
send me mail at this internet address,
and I will send back a list of projects.

STACKPOINTER 3-1987 47

(I wonder if this is will work (looking
at the chalk)). Is this readable? This is
“RMS@PREP.ALMIT.EDU” (just fol-
low the bouncing ball.) And now let’s
take a break, and after the break, I will
say some really controversial things.
So don’t leave now. If you leave now,
you’re going to miss the real experi-
ence.

[Here we had a 15 min. break]

Why Software Can’t Be Owned

I've been asked to announce how
you can get copies of GNU software.
Well, one way of course is if you know
a friend who has a copy, you can copy
it, but if you don’t know a friend who
has a copy, and you’re not on the In-
ternet, you can’t FTP it, then you can
. always order a distribution tape, and
send some money to the Free Software

Foundation. Of course free programs is

not the same thing as free distribution.
I’ll explain this in detail later.

Here I have an EMACS manual, of
the nicely printed variety. It has been
phototypeset and then offset printed.
Although you can also print it your-
self from the sources that come in the
EMACS distribution, you can get these
copies from the Free Software Foun-
dation. You can come afterwards and
look at this and also this contains an
order for you might copy some infor-
mation from, and this [front] picture
has also sometimes been enjoyed. This

[pointing at a figure being chased by
RMS riding a gnu] is a scared software
hoarder, I'll be talking about him in a
moment.

Software is a relatively new phe-
nomenon. People started distributing
software perhaps thirty years ago. It
was only about twenty years ago that
someone had the idea of making a busi-
ness about it. It was an area with no
tradition about how people did things,
or what rights anybody had. And there
were several ideas for what other areas
of life you might bring traditions from
by analogy.

One analogy that is liked by a lot of
professors in Europe, is that between
programs and mathematics. A program
is sort of a large formula. Now, tradi-
tionally nobody can own a mathemati-
cal formula. Anybody can copy them
and use them.

The analogy that’s most meaningful
to ordinary people is with recipes. If
you think about it, the thing that you
have in ordinary life that’s most like
program is a recipe, it’s instructions
for doing something. The differences
come because a recipe is followed by
a person, not by a machine automati-
cally. It’s true there’s no difference be-
tween source code and object code for
a receipe, but it’s still the closest thing.
And no-one is allowed to own a receipe.

But the analogy that was chosen was
the analogy with books, which have

48 STACKPOINTER 3-1987

copyright. And why was this choice
made? Because the people that had
the most to gain from making that par-
ticular choice were allowed to make
the decision. The people who wrote
the programs, not the people who used
the programs, were allowed to decide,
and they decided in a completely selfish
fashion, and as a result they’ve turned
the field of programming into an ugly
one.

When I entered the field, when I
started working at MIT in 1971, the
idea that programs we developed might
not be shared was not even discussed.
And the same was Stanford and CMU,
and everyone, and even DIGITAL. The
operating system from DIGITAL at that
time was free. And every so often I got
pieces of program from DIGITAL sys-
‘tem such as a PDP-11 cross assembler,
and I ported it to run on ITS, and added

lots of features. It was no copyright on

that program.

It was only in the late seventies
that this began to change. I was ex-
tremely impressed by the sharing spirit
that we had. We were doing some-
thing that we hoped was useful and
were happy if people could use it. So
when I developed the first EMACS,
and people wanted to start use it out-
side of MIT, I said that it belongs to
the EMACS “Commune”, that in order
to use EMACS you had to be a mem-
ber of the commune, and that meant
that you had the responsibility to con-

tribute all the improvements that you .

made. All the improvements to the
original EMACS had to be sent back to
me so that I could incorporate them into
newer versions of EMACS, so that ev-
eryone in the community could benefit
from them.

But this started to be destroyed when
SCRIBE was developed at CMU, and
then was sold to a company. This
was very disturbing to a lot of us at
many universities, because we saw that
this was a temptation placed in front
of everyone, that it was so profitable
to be uncooperative and those of us
who still believed in cooperation had no
weapon to try to compel people to co-
operate with us. Clearly, one after an-
other, people would defect and stop co-
operating with the rest of society, un-
til only those of us with very strong
consciences would still cooperate. And
that’s what happened.

The field of programming has now
become an ugly one, where every-
one cynically thinks about how much
money he is going to get by not being
nice to the other people in the field, and
to the users.

I want to establish that the practice
of owning software is both materially
wasteful, spiritually harmful to society
and evil. All these three things being
interrelated. It’s spiritually harmful be-
cause it involves every member of soci-
ety who comes in contact with comput-
ers in.a practice that is obviously ma-
terially wasteful to other people. And

STACKPOINTER 3-1987 49

every time you do something for your
own good, which you know is hurting
other people more that it helps you, you
have to become cynical in order to sup-
port such a thing in your mind. And it’s
evil because it is deliberatly wasting the
work done in society and causing social
decay.

First I want to explain the kinds of
harm that are done by attempts to own
software and other information that’s
generally useful, then I'll go on to re-
butt the arguments made to support that
practice, and then I want to talk about
how to fight that phenomenon, and how
I’m fighting it.

The idea of owning information is
harmful in three different levels. Ma-
terially harmful on three different lev-
els, and each kind of material harm has
a corresponding spiritual harm.

The first level is just that it discour-
ages the use of the program, it causes
fewer people to use the program, but
in fact it takes no less work to make
a program for fewer people to use.
When you have a price on the use of
a program this an incentive, that’s the
word these software hoarders love to
use, the price is an incentive for peo-
ple not to use the program, and this is
a waste. If for example only half as
many people use the program because
it has a price on it, the program has
been half wasted. The same amount of
work has produced only half as much
wealth.

Now in fact, you don’t have to do
anything special to cause a program to
get around to all the people who want to
use it, because they can copy it them-
selves perfectly well, and it will get
to everyone. All you have to do af-
ter you’ve written the program is to sit
back and let people do what they want
to do. But that’s not what happens; in-
stead somebody deliberatly tries to ob-
struct the sharing of the program, and in
fact, he doesn’t just try to obstruct it, he
tries to pressure other people into help-
ing. Whenever a user signs a nondisclo-
sure agreement he has essentially sold
out his fellow users. Instead of follow-
ing the golden rule and saying, “I like
this program, my neighbour would like
the program, I want us both to have it”,
instead he said, “Yeah, give it to me. To
hell with my neighbour! I'll help you
keep it away from my neighbour, just
give it to me!”, and that spirit is what
does the spiritual harm. That attitude
of saying, “To hell with my neighbours,
give ME a copy”.

After I ran into people saying they
wouldn’t let me have copies of some-
thing, because they had signed some se-
crecy agreement, then when somebody
asked me to sign a thing like that I knew
it was wrong. I couldn’t do to some-
body else the thing that had made me
so angry when it was done to me.

But this is just one of the levels
of harm. The second level of harm
comes when people want to change the
program, because no program is re-

50 STACKPOINTER 3-1987

ally right for all the people who would
like to use it. Just as people like to
vary recipes, putting in less salt say, or
maybe they like to add some green pep-
pers, so people also need to change pro-
grams in order to get the effects that
they need.

Now, the software owners don’t re-
ally care whether people can change the
program or not, but it’s useful for their
ends to prevent people. Generally when
software is proprietary you can’t get the
sources, you can’t change it, and this
causes a lot of wasted work by pro-
grammers , as well as a lot of frustration
by users. For example: I had a friend
who told me how she worked for many
months at a bank where she was a pro-
grammer, writing a new program. Now,
there was a commercially available pro-
gram that was almost right, but it was
just not quite the thing they needed, and
in fact as it was it was useless for them.
The amount of change it would have
taken to make it do what they needed
was probably small, but because the
sources of that program were not avail-
able, that was impossible. She had to
start over from scratch and waste a lot
of work. And we can only speculate
about what fraction of all programmers
in the world are wasting their time in
this fashion.

And then there is also the situa-
tion where a program is adequate make
do, but it’s uncomfortable. For exam-
ple: The first time we had a graph-
ics printer at MIT, we wrote the soft-

ware ourselves, and we put in lots of
nice features, for example it would send
you a message when your job had fin-
ished printing, and it would send you
a message if the printer ran out of pa-
per and you had a job in the queue,
and lots of other things that were what
we wanted. We then got a much nicer
graphic printer, one of the first laser
printers, but then the software was sup-
plied by Xerox, and we couldn’t change
it. They wouldn’t put in these features,
and we couldn’t, so we had to make do
with things that “half worked”. And it
was very frustrating to know that we
were ready, willing and able to fix it, but
weren’t permitted. We were sabotaged.

And then there are all the people
who use computers and say that the
computers are a mystery to them, they
don’t know they work. Well how can
they possibly know? They can’t read
the programs they’re using. The only
way people learn how programs should
be written, or how programs do what
they do, is by reading the source code.

So I could only wonder whether the
idea of the user who just thinks of the
computer as a tool is not actually a self-
fulfilling profecy, a result of the prac-
tice of keeping source code secret.

Now the spiritual harm that goes
with this kind of material harm, is in the
spirit of self-sufficiency. When a per-
son spends a lot of time using a com-
puter system, the configuration of that
computer system becomes the city that

STACKPOINTER 3-1987 51

he lives in. Just as the way our houses
and furniture are laid out, determines
what it’s like for us to live among them,
so that the computer system that we
use, and if we can’t change the com-
puter system that we use to suit us,
then our lives are really under the con-
trol of others. And a person who sees
this becomes in a certain way demoral-
ized: “It’sno use trying to change those
things, they’re always going to be bad.
No point even hassling it. I'll just put
inmy timeand...... whenit’sover I'LL
go away and try not to think about it any
more ”. That kind of spirit, that unen-
thusiasm is what results from not being
permitted to make things better when
you have feelings of public spirit.

The third level of harm is in the
interaction between software develop-
ers themselves. Because any field of
knowledge advance most when peo-
ple can build on the work of others,
but ownership of information is explic-
itly designed to prevent anyone else to
doing that. If people could build on
other people’s work, then the owner-
ship would become unclear, so they
make sure each new entry to the field
has to start from the beginning, and thus
they greatly slow down the advance of
the field.

So we can see: How many spread-
sheet systems were made all by differ-
ent companies , all without any bene-
fit of understanding how it was done
before? Yes it’s true, the first spread-
sheet written wasn’t perfect. It proba-

bly only ran on certain kinds of comput-
ers, and it didn’t do some things in the
best possible way. So there were vari-
ous reasons why certain people would
want to rewrite parts of it. But if they
had only to rewrite the parts that they
really wanted to improve, that would
have made for a lot less work. You
may see how to make one aspect of a
system better, you may not see how to
make another aspect of the same sys-
tem any better, in fact you might have
a great deal of trouble doing it as well.
Now if you could take the part that you
like and redo only the part that you
have an inspiration for, you could have
a system that’s better in all ways, with
much less work than it now takes to
write a completely new system. And
we all know that system can often bene-
fit from being completely rewritten, but
that’s only if you can read the old one
first.

Thus, the people in the program-
ming field have evolved a way of wast-
ing a lot of their time and thus making
apparently a need for more program-
mers than we really need. Why is there
a programmer shortage? Because with
intellectual property programmers have
arranged to waste half the work they do,
so we seem to need twice as many pro-
grammers. And so, when people point
to the system of intellectual property
and say “look at the large employment
statistics, look at how big this indus-
try is” what that really proves is that
people are wasting a lot of money and
time. . If they talk about looking for

52 STACKPOINTER 3-1987

ways to improve programmer produc-
tivity, they’re happy to do this if it in-
volves superior tools, but to improve
programmer productity by getting rid
of the explicit things that is done to
reduce programmer productivity, that
they’re against. Because that would re-
duce the number of programmers em-
ployed. There’s something a little bit
schizophrenic there.

And the spiritual harm that corre-
sponds to this level of material harm
is'to the spirit of scientific cooperation,
which used to be so strong that scien-
tists even in countries that were at war
would continue cooperating, because
they knew that what they were doing
had nothing to do with the war, it was
just for the long term benefit of human-
ity. Nowadays, people don’t care about
the long term benefit of humanity any
more.

To get an idea of what it’s like to ob-
struct the use of a program, let’s imag-
ine that we had a sandwich, that you
could eat, and it wouldn’t be consumed.
You could eat it, and another person
could eat it, the same sandwich, any
number of times, and it would always
remain just as nourishing as originally.

The best thing to do, the thing that
we ought to do with this sandwich is
carry it around to the places where there
are hungry people; bringing it to as
many mouths as possible, so that it
feeds as many people as possible. By
all means, we should not have a price

to eat from this sandwich, because then
people would not afford to eat it, and it
would be wasted.

The program is like this sandwich,
but even more so because it can be
in many different places at once being
eaten, used by different people one after
the other. It is as if this sandwich was
enough to feed everyone, everywhere,
forever, and that were not allowed to
happen, because someone believed he
should own it.

Now, the people who believe that
they can own programs, generally put
forward two lines of argument for this.
The first one is “I wrote it, it is a child
of my. spirit, my heart, my soul is in
this. How can anyone take it away from
me? Wherever it goes it’s mine, mine,
MINE!!”. Well, it’s sort of strange that
most of them signs agreements saying it
belongs to the company they work for.

So I believe this is one of the things
you can easily talk yourself into believ-
ing is important, but you can just as eas-
ily convince yourself it doesn’t matter
at all.

Usually, these people use this argu-
ment to demand the right to control
even how people can change a program.
They say: “Nobody should be able to
mess up my work of art”. Well, imag-
ine that the person who invented a dish
that you plan to cook had the right to
control how you can cook it, because
it’s his work of art. You want to leave

STACKPOINTER 3-1987 53

out the salt, but he says “Oh, no. I de-
signed this dish, and it has to have this
much salt!” “But my doctor says it’s
not safe for me to eat salt. What can I
do?”.

Clearly, the person who is using the
program is much closer to the event.
The use of the program affects him very
directly, whereas it only has a sort of ab-
stract relation to the person who wrote
the program. And therefore, for the
sake of giving people as much con-
trol as possible over their own lives, it
has to be the user who decides those
things.

The second line of argument they
make is the economic one. “How will
people get payed to program?” they
say, and there’s a little bit of real issue
in this. But alot of what they say is con-
fusion. And the confusion is, it’s not at
all the same to say “if we want to have
a lot of people programming we must
arrange for them not to need to make
a living in any other fashion” on the
one hand, and to say “We need to have
the current system, you need to get rich
by programming” on the other hand.
There’s a big difference between just
making a living wage and making the
kind of money programmers, at least in
the US make nowadays. They always
say: “How will I eat?” , but the prob-
lem is not really how “Will he eat?”, but
“How will he eat sushi?”. “How will
I have a roof over my head?”, but the
real problem is “How can he afford a
condo?”.

The current system were chosen by
the people who invest in software de-
velopment, because it gives them the
possibility of making the most possible
money, not because it’s the only way
anyone can ever come up with money
to support a system development ef-
fort. In fact, even as recently as ten
and fifteen years ago it was common to
support software development in other
ways. For example, those DIGITAL
operating systems that were free, even
in the early seventies, were developed
by people who were paid for their work.
Many useful programs has been devel-
oped at universities. Nowadays those
programs are often sold , but fifteen
years ago they were usually free, yet the
people were paid for their work.

When you have something like a
program, like an infinite sandwich, like
a road, which has to be built once, but
once it is built it pretty much doesn’t
matter how much you use it, there’s no
cost in using it, generally it’s better if
we don’t put any price on using it. And
there are plenty of those things that we
develop now, and pay people to build.
For example, all the streets out there.
It’s very easy to find people who will
program without being paid; it really
is impossible to find people who will
build streets without being paid. Build-
ing streets is not creative and fun like
programming. But we have plenty of
streets out there, we do come up with
the money to pay them, and it’s much
better the way we do it than if if we said:
“Let’s have companies go and build

54 STACKPOINTER 3-1987

streets and put toll booths up, and then
every time you turn another street cor-
ner, you pay another toll. And then the
companies that picked the good places
to put their streets, they will be prof-
itable, and the others will go bankrupt.”

There’s a funny thing that happens
whenever someone comes up with a
way of making lots of money by hoard-
ing something. Until that time you’ve
probably had lots and lots of people
who were really enthusiastic and ea-
ger to work in that field, the only sort
of question is how can they get any
sort of livelihood at all. If we think
of mathematicians for example, there
are a lot more people who want to be
pure mathematicians than there is fund-
ing for anybody to be pure mathemati-
cians. And even when you do get fund-
ing, you don’t get very much, they don’t
live well. And for musicians it’s even
worse. I saw a statistics for how much
the average musician, the average per-
son devoting most of his time trying to
be a musician, in Massachusetts made;
it was something like half the median
income or less. It is barely enough to
live on, it’s difficult. But there are lots
of them trying to do that. And then,
somehow when it gets generally possi-
ble to get very well paid to do some-
thing, all those people disappear, and
people start saying “nobody will do it
unless they get paid that well”.

And I saw this happen in the field
of programming. The very same peo-
ple who used to work at the Al lab

and get payed very little and love it,
now wouldn’t dream of working for
less than fifty thousand dollars a year.
What happened? When you dangle be-
fore people the possibility of making
lots of money, when they see that other
people doing similar work are getting
paid that much money, they feel that
they should get the same, and thus no-
one is willing to continue the old way.
And it’s easy after this has happened to
think that paying people a lot of money
is the only way it could be, but that’s not
so. If the possibility of making a lots
of money did not exist, you would have
people who would accept doing it for a
little money, specially when it’s some-
thing that is creative and fun.

Now I saw the unique world of the
Al lab destroyed, and I saw that sell-
ing software was an intrinsic part of
what had destroyed it, and I saw also,
as I explained before, how you need to
have free software in order to have a
community like that. But then think-
ing about it more, I realized all these
ways in which hoarding software hurts
all of society, most specially by pres-
suring people to sell out their neigh-
bours and causing social decay. The
same spirit that leads people to watch
while somebody in the street is getting
stabbed and not tell anyone. The spirit
that we can see so many companiess all
around us displaying all the time. And
it was clear to me I had a choice, I could
become part of that world and feel un-
happy about what I was doing with my
life, or.I could decide to fight it. So I de-

STACKPOINTER 3-1987 55

cided to fight it. I've dedicated my ca-
reer to try to rebuild the software shar-
ing community, to trying to put an end
to the phenomenon of hoarding gener-
ally useful information. And the GNU
system is a means to this end. It is a
technical means to a social end. With
the GNU system, I hope to vaccinate
the users against the threat of the soft-
ware hoarders.

Right now the hoarders essentially
claims the power to render a person’s
computer useless. There used to peo-
ple in the US, most commonly about
fifty years ago, they were in the Mafia,
they would go up to stores and bars,
esspecially bars when bars were illegal
of course. They would go up and say:
“A lot of places around here have been
burning down lately. You wouldn’t
want your place to burn down, would
you? Well we can protect you from
fires, you just have to pay us a thou-
sand dollars a month, and we’ll make
sure you don’t have a fire here”. And
this was called “the protection racket”.
Now we have something where a per-
son says “You got a nice computer
there, and you’ve got some programs
there that you're using. Well, if you
don’t want those programs to disappear,
if you don’t want the police to come
after you, you better pay me a thou-
sand dollars, and I'll give you a copy of
this program with a licence”, and this is
called “the software protection racket”.

Really all they’re doing is interfer-
ing with everybody else doing what

needs to be done, but they’re pretend-
ing as much to them selves as to the
rest of us, that they are providing a use-
ful function. Well, what I hope is that
when that software mafia guy comes
up and says, “You want those programs
to disappear on your computer?”, the
user can say “I’'m not afraid of you any
more. I have this free GNU software,
and there’s nothing you can do to me

it

now.

Now, one of the justifications people
sometimes offer for owning software, is
the idea of giving people an incentive
to produce things. I support the idea
of private enterprise in general, and the
idea of hope to make money by pro-
ducing things that other people like to
use, but it’s going haywire in the field
of software now. Producing a propri-
etary program is not the same contri-
bution to society as producing the same
program and letting it be free. Because
writing the program is just a potential
contribution to society. The real contri-
bution to the wealth of society happens
only when the program is used. And
if you prevent the program from being
used, the contribution dosn’t actually
happen. So, the contribution that soci-
ety needs is not these proprietary pro-
grams that everyone has such an incen-
tive to make, the contribution we really
want is free software, so our society is
going haywire because it gives people
an incentive to do what is not very use-
ful, and no incentive to do what is use-
ful. Thus the basic idea of private en-
terprise is not being followed, and you

56 STACKPOINTER 3-1987

could even say that the society is neu-
rotic. After all when an individual en-
courages in others behavior that is not
good for that individual we call this a
neurosis. Here society is behaving in
that fashion, encouraging programmers
to do things that is not good for society.

I’'m unusual. I'd rather believe that
I'm a good member of society and that
I'm contributing something, than feel
that I’m ripping society off success-
fully, and that’s why I’ve decided to
do what I have done. But every one
is at least a little bit bothered by the
feeling that they are getting paid to do
what’s not really useful. So let’s stop
defending this idea of incentives to do
the wrong thing and let’s at least try to
come up with arrangements to encour-
age people to do the right thing, which
is to make free software.

Thank you.

[After this RMS answered questions
for about an hour. I have only included
a very few of the questions and answers
in this version. The tape was bad, and I
didn’t have the time to do a proper job
on all of it]

Q: Has anyone tried to make prob-
lems for you?

A: The only time anyone has tried
to make a problem for me was those
owners, so called, self-styled owners of
Gosling Emacs. Aside from that they
have no grounds to do so, so there is

not much they can do. By the way, I'd
like to call everyone’s attention to the
way in which people use language to
try to encourage people to think cer-
tain thoughts and not think of others.
Much of the terminology current in the
field was chosen by the self-styled soft-
ware Owners to try to encourage you to
try to make you see software as sim-
ilar to material objects that are prop-
erty, and overlook the differences. The
most flagrant example of this is the term
“pirate”. Please refuse to use to use
the term “pirate” to describe somebody
who wishes to share software with his
neighbour like a good citizen.

I forgot to tell you this: The idea of
copyright was invented after the print-
ing press. In ancient times authors
copied from each other freely, and this
was not considered wrong, and it was
even very useful: The only way cer-
tain authors works have survived, even
in fragments, is because some of them
were quoted at length in other works
which have survived.

This was because books were copied
one copy at the time. It was ten times
as hard to make ten copies as it was to
make one copy. Then the printing press
was invented, and this didn’t prevent
people from copying books by hand,
but by comparison with printing them,
copying by hand was so unpleasant that
it might as well have been impossible.

When books could only be made by
mass production, copyright then started

STACKPOINTER 3-1987 57

to make sense and it also did not take
away the freedom of the reading public.
As a member of the public who didn’t
own a printing press, you couldn’t copy
a book anyway. So you weren’t loos-
ing any freedom just because there were
copyrights. Thus copyright was in-
vented, and made sense morally be-
cause of a technological change. Now
the reverse change is happening. In-
dividual copying of information is be-
coming better and better, and we can
see that the ultimate progress of tech-
nology is-to make it possible to copy
any kind of information. [break due to
turning of tape]

Thus we are back in the same situa-
tion as in the ancient world where copy-
right did not make sense.

If we consider our idea of property,
they come from material objects. Ma-
terial objects satisfy a conservation law,
pretty much. Yes it’s true I can break a
chalk in half, that’s not it, and it gets
worn down, it gets consumed. But ba-
sically this is one chair [pointing at a
chair]. I can’t just sort of snap my fin-
ger and have two chairs. The only way
to get another one is to build it just the
way the first one was build. It takes
more raw materials, it takes more work
of production, and our ideas of property
were evolved to make moral sense to fit
these facts.

For a piece of information that any-
one can copy, the facts are different.
And therefor the moral attitudes that

fit are different. Our moral attitudes
comes from thinking how much it will
help people and how much it will hurt
people to do certain things. With a ma-
terial object, you can come and take

away this chair, but you couldn’t come -

and copy it. And if you took away the
chair , it wouldn’t be producing any-
thing, so there’s no excuse. I somebody
says: “I did the work to make this one
chair, and only one person can have this
chair, it might as well me”, we might
as well say: “Yeah, that makes sense”.
When a person says: “I carved the bits
on this disk, only one person can have
this disk, so don’t you dare take it away
from me”, well that also make sense.
If only one person is going to have the
disk, it might as well be the guy who
owns that disk.

But when somebody else comes up
and says: “I’m not going to hurt your
disk, I'm just gonna magically make
another one just like it and then I'll take
it away and then you can go on using
this disk just the same as before”, well
it’s the same as if someone said: “I've
got a magic chair copier. You can keep
on enjoying your chair, sitting in it, hav-
ing it always there when you want it,
but I'll have a chair too”. That’s good.

If people don’t have to build, they
can just snap their fingers and duplicate
them, that’s wonderful. But this change
in technology doesn’t suit the people
who wants to be able to own individual
copies and can get money for individual
copies. That’s an idea that only fits con-

58 STACKPOINTER 3-1987

served objects. So they do their best to
render programs like material objects.
Have you wondered why, when you go
to the software store and buy a copy of
a program it comes in something that
looks like a book? They want people to
think as if they were getting a material
object, not to realize what they have re-
ally got in the form of digital copyable
data.

What is a computer after all but a
universal machine? You've probably
studied universal Turing machines, the
machines that can imitate any other ma-
chine. The reason a universal machine
is so good is because you can make it
imitate any other machine and the di-
rections can be copied and changed, ex-
actly the things you can’t do with a ma-
terial object. And those are is exactly
what the software hoarders want to stop
the public from doing. They want to
have the benefit of the change in tech-
nology, to universal machines, but they
don’t want the public to get that benefit.

Essentially they are trying to pre-

serve the “material object age”, but it’s
gone, and we should get our ideas of
right and wrong inync” with the actual
facts of the world we live in.

Q: So it boils down to ownership of
information. Do you think there are any
instances where, you opinion, it’s right
to own information?

A: With information that’s not gen-
erally useful, or is of a personal nature,
I would say it’s OK. In other words not
information about how to do things, but
information about what you intend to
do. Information whose only value to
others is speculative, that is they can
take some money away from you, but
they can’t actually create anything with
it. It’s perfectly reasonable I'd say to
keep that sort of thing secret and con-
trolled.

But in terms of creative information,
information that people can use or en-
joy, and that will be used and enjoyed
more the more people who have it, al-
ways we should encourage the copying.

Copyright © 1986, 1987 by Richard M. Stallman and Bjgrn Remseth.
Richard Stallman, 545 Tech Sq rm 703, Cambridge MA 02139, USA.
Bjgrn Remseth, Andrenbakken 13, N-1393 @stenstad, NORWAY.

Permission is granted to make and distribute verbatim copies of this transcript
as long as the copyright and this permission notice appear.

STACKPOINTER 3-1987 59

Darfor kallas den ’han”

Nu har vi kommit pd varfor man sdger ” han” om datorn:

Den bér skotas av kvinnor, gdrna s& minga som mdjligt.

Den méste matas med information, saknar forméga till egna initiativ.
Den tél inte Gverbelastning,

Den gor manga fel, utan att sjilv rd for det.

Den forsoker att hilla méttet, befaras med aren bli utbytt mot intelligentare ut-
ldndska konkurrenter.

Den maste underhillas hela tiden.

Den #r timligen enkelspérig.

Den fordrar stort tdlamod vid kontaktsvérigheter.
Den behdvs for framtida utveckling.

Den #r ett ekonomiskt alternativ.

60 STACKPOINTER 3-1987

-Jolh g :-IR {1189 avec SENSITAL

Le préservatif n'étant pas lubrifié, I'adjonction d'un tube
de “SENSITAL” dans nos boites BLEUES, laisse a I'intéréssé
1a possibilité d'utitiser “SENSITAL* en fonction des cir-
constances car Il est parfois nécessaire, pour déclencher
le réflexe féminin, d'avoir recours & "SENSITAL® qui aide
la nature et se résorbe au moment opportun.

IR WL LUBRIFIE

stymuleve

LUBRIFIE

[IIIHET *stymuléve” grice sa ligne nouvelle qui
épouse parfaitement la forme de votre pénis,
vous fera oublier que vous utilisez un protecteur.

[ITEEE avec®stymuléve vous découvrirez un plaisir
nouveau grace & la texture uds particulidre de la
pellicule de latex mise au point par un éminent

sexologue.

Le préservatif masculin...
... cOoncu pour la femme

Je me souviens de “stymuléve” car je I'oublie

(o] g -BA1:3 039 Forme nouvelle

Finltion Médicale LUBRIFIE D'AVANCE
donne au couple 2 Sensation du Naturel

Détachez et présentez ce ticket a votre Pharmacien -

-Imachu'n présentez ce ticket & votre Pharmacien
pour acheter discrétement a““ 3’%

S 200 pour achster discrétement

5. % '[’7) %

8 = PROPHYLTEX SN S mLL\QU@ & z

7, > % 2

’% “ BOITE VERTE BOITE BLANCHE 1’1@ %
S oS de 12 - 25 - 50 de 12 - 25 - 50 S e Vs

comment utiliser " PROPHYLTEX"” EN TOUTE SECURITE

Ne pas tirer sur le réservoir pour dérouler les préservatifs "SN” ou "Stymuléve”
1°) Lorsque I'érection est compléte, placer le protecteur de maniére que le
lubrifiant se trouve a l'extérieur,

2°) Pincer légérement le bout du préservatif pour éviter d'enfermer de
I'air en laissant un espace suffisant entre I'extrémité de la verge
et le bout du préservatif, puis le dérouler compléetement.

3°) Pour un plaisir réciproque *PROPHYLTEX" doit évoluer dans un milieu par-
faitement lubrifié et, plus particuliérement, lors de la PREMIERE PENETRATION

A DEFAUT : Utiliser "SENSITAL" gelée lubrifiante en tubes Grand Modéle - Toutes Pharmacies

Revétir un nouveau préservatif avant chaque rapport. NE PAS LE LAVER.
" PROPHYLTEX " et "STYMULEVE" sont garantis fabriquésen LATEX ligguicdde NATUREL

Détachez et présentez ce ticket & votre Pharmacien

pour acheter discrétement

PROPHYLTEX
LUBRIFIE

BOITE ROUGE
de 6-12-25-50

Détachez et présentez ce ticket a votre Pharmacien
pour acheter discrétement
PROPHYLTEX

aves SENSITAL lubrifiant séparé

BOITE BLEUE
de 12 et 25

